首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rapid rate at which cancer cells divide necessitates a mechanism for telomere maintenance, and in approximately 90% of all cancer types the enzyme telomerase is used to maintain the length of telomeric DNA. Telomerase is a multi-subunit enzyme that minimally contains a catalytic protein subunit, hTERT, and an RNA subunit, hTR. Proper assembly of telomerase is critical for its enzymatic activity and therefore is a requirement for the proliferation of most cancer cells. We have developed the first high-throughput screen capable of identifying small molecules that specifically perturb human telomerase assemblage. The screen uses a scintillation proximity assay to identify compounds that prevent a specific and required interaction between hTR and hTERT. Rather than attempting to disrupt all of the individual hTR-hTERT interactions, we focused the screen on the interaction of the CR4-CR5 domain of hTR with hTERT. The screen employs a biotin-labeled derivative of the CR4-CR5 domain of hTR that independently binds [(35)S]hTERT in a functionally relevant manner. The complex between hTERT and biotin-labeled RNA can be captured on streptavidin-coated scintillation proximity beads. Use of 96-well filter plates and a vacuum manifold enables rapid purification of the beads. After optimization, statistical evaluation of the screen generated a Z' factor of 0.6, demonstrating the high precision of the assay.  相似文献   

2.
根据正常细胞、凋亡细胞和坏死细胞的细胞膜对核酸荧光染料的不同选择通透性,用4μmol/L YO-PRO-1(YP)和4μg/ml 碘化丙啶(Propidium iodide, PI)染色96孔板中的细胞样品。分别在485/538 (Ex/Em, nm) 和530/590 (Ex/Em, nm) 的检测波长下借助荧光分光光度计检测细胞样品孔的YP和PI荧光强度。将YP和PI荧光强度值与用荧光显微镜对同一细胞样品细胞凋亡和坏死的定量分析结果相对应,通过对YP荧光强度值与凋亡细胞数的直线回归分析 (r = 0.999,P<0.01),得到依据YP荧光强度值求得凋亡细胞数的直线相关方程。该方法可检测出样品中少至180个的凋亡细胞,具有灵敏度高和快速高效的特点。  相似文献   

3.
Several lines of evidence suggest that cancer progression is associated with up-regulation or reactivation of telomerase and the underlying mechanism remains an active area of research. The heterotrimeric MRN complex, consisting of Mre11, Rad50 and Nbs1, which is required for the repair of double-strand breaks, plays a key role in telomere length maintenance. In this study, we show significant differences in the levels of expression of MRN complex subunits among various cancer cells and somatic cells. Notably, siRNA-mediated depletion of any of the subunits of MRN complex led to complete ablation of other subunits of the complex. Treatment of leukemia and prostate cancer cells with etoposide lead to increased expression of MRN complex subunits, with concomitant decrease in the levels of telomerase activity, compared to breast cancer cells. These studies raise the possibility of developing anti-cancer drugs targeting MRN complex subunits to sensitize a subset of cancer cells to radio- and/or chemotherapy.  相似文献   

4.
Huang Y  Kong D  Yang Y  Niu R  Shen H  Mi H 《Biotechnology letters》2004,26(11):891-895
A novel real-time quantitative method for measuring telomerase activity is described in which the duplex scorpion primer is used to provide an intramolecular probing mechanism for specific detection of telomerase activity. Using this method, linearity from 10 to 10(4) cells expressing telomerase activity could be obtained (R2 = 0.994). The requirement of post-PCR steps is thus obviated.  相似文献   

5.
Analysis of telomerase activity and detection of its catalytic subunit,hTERT   总被引:16,自引:0,他引:16  
The discovery of the enzyme telomerase and its subunits has led to major advances in understanding the mechanisms of cellular proliferation, immortalization, aging, and neoplastic transformation. The expression of telomerase in more than 85% of tumors provides an excellent tool for the diagnosis, prognosis, and treatment of cancer. However, the techniques employed in its detection appear to play a significant role in the interpretation of the results. The telomeric repeat amplification protocol (TRAP assay) has been the standard assay in the detection of telomerase activity and many variations of this technique have been reported. Recent advances in the development of the TRAP assay and the incorporation of techniques that provide a quantitative and qualitative estimate of telomerase activity are assessed in this review. In addition to histological and cytological examination of tissues, distribution patterns of the catalytic subunit of telomerase, hTERT, are frequently used in the prognosis of tumors. The methods involved in the detection of hTERT as a biomarker of cellular transformation are also analyzed.  相似文献   

6.
A novel high throughput colorimetric urease activity assay was compared to the Nessler method. The new method employs phenol red to determine the urease activity. This method reduces significantly sample processing time and allows real-time investigations. This method is rapid, sensitive, easy, cost-effective, and does not use any toxic chemical reagents.  相似文献   

7.
A homogeneous time-resolved fluorescence detection of telomerase activity   总被引:2,自引:0,他引:2  
The homogeneous time-resolved fluorescence (HTRF) technology is an assay developed to study the interaction between biomolecules. This detection system is based on a fluorescence resonance energy transfer (FRET) between a Tris-bipyridine europium cryptate used as a long-lived fluorescent donor and a chemically modified allophycocyanine as acceptor. This technology is characterized by both a spectral selectivity and a temporal selectivity (due to the time-resolved mode), ensuring a highly specific signal. Here a europium-cryptate-labeled deoxyuridine triphosphate analogue (K-11-dUTP) was used to monitor the extension reaction on a biotinylated oligonucleotide used as substrate for telomerase in a telomeric repeat amplification protocol (TRAP). After the addition of an allophycocyanine-streptavidin conjugate, the extension products give rise to a FRET between the incorporated cryptate moieties and the allophycocyanine acceptor that then displays a specific long-lived emission. The TRAP-HTRF format was validated as a screening tool by using a 2,6-diaminoanthraquinone analogue, a known inhibitor of telomerase activity. The IC(50) measured was consistent with the reported values, showing the convenience of the HTRF technology for the study of telomerase activity and inhibitors.  相似文献   

8.
9.
A telomerase assay has been developed for high-throughput screening in 96-well microtiter plates. A crude cell lysate which adds telomere repeats to a biotinylated DNA primer is the source of telomerase. The telomerase-extended primer is hybridized to a digoxigenin-labeled telomere antisense DNA probe. The hybrid is further processed by enzyme-linked immunosorbent assay (ELISA) as follows. The biotinylated hybrid is captured on streptavidin-coated microtiter plates. The immobilized hybrid is probed with alkaline phosphatase-antidigoxigenin and detected via chemiluminescent readout. The limit of detection of a chemically synthesized tetra-telomere repeat was about 10 attomoles. Apparent telomerase activity was detected in lysates of 293T cells. The signal to background for the assay (ratio of signal for the complete assay mixture divided by the signal for the assay mixture without primer) was around 10. An automated system that performed unattended runs of up to 17 96-well microtiter plates in 8h was constructed.  相似文献   

10.
Quantification of telomerase activity by direct scintillation counting   总被引:2,自引:0,他引:2  
An improved telomerase assay was developed that allows direct quantification of the enzyme activity by scintillation counting of the labeled telomerase product. The assay measures the incorporation of 32P-dGTP into telomeric repeats synthesized at the 3′ end of a biotinylated primer. Telomerase reaction product is separated from the reaction mix by streptavidin-coated magnetic beads and counted. The assay can be used for quantitative studies of human telomerase and its inhibitors.  相似文献   

11.
Development patterns of telomerase activity in barley and maize   总被引:5,自引:0,他引:5  
Eukaryotic chromosomes terminate with specialized structures called telomeres. Maintenance of chromosomal ends in most eukaryotes studied to date requires a specialized enzyme, telomerase. Telomerase has been shown to be developmentally regulated in man and a few other multicellular organisms, while it is constitutively expressed in unicellular eukaryotes. Recently, we demonstrated telomerase activity in plant extracts using the PCR-based TRAP (Telomeric Repeat Amplification Protocol) assay developed for human cells. Here we report telomerase activities in two grass species, barley and maize, using a modified, semi-quantitative TRAP assay. Telomerase was highly active in very young immature embryos and gradually declined during embryo development. The endosperm telomerase activity was detectable, but significantly lower than in the embryo and declined during kernel development with no detectable activity in later stages. Telomerase activity in dissected maize embryo axis was several orders of magnitude higher than in the scutellum. Telomerase activity was not detected in a range of differentiated tissues including those with active meristems such as root tips as well as the internode and leaf base. The role of telomerase repression during differentiation and the relationship between chromosome healing and telomerase activity is discussed.  相似文献   

12.
A new derivative of 1-phenyl-3-methyl-5-pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, named TELIN, was chemically synthesized and identified as a potent inhibitor of human telomerase in the cell-free telomeric repeat amplification protocol. TELIN inhibited telomerase activity at submicromolar level with IC50 of approximately 0.3 microM. Kinetic studies revealed that TELIN does not bind to DNA but to telomerase protein, and the mode of inhibition by this substance was competitive-noncompetitive mixed-type with respect to the TS primer, whereas it was uncompetitive or noncompetitive-uncompetitive mixed-type with respect to the three deoxyribonucleosides. These results demonstrate that TELIN is a specific potent catalytic blocker of telomerase,and is considered to be a valuable substance for medical treatment of cancer and related diseases.  相似文献   

13.
Telomeres are protein–DNA complexes that protect chromosome ends from degradation and fusion. In Leishmania spp., telomeric DNA comprises a conserved TTAGGG repeat and is maintained by telomerase. Telomerase is a multisubunit enzymatic complex that ensures the complete DNA replication by adding new telomeric repeats to the G-rich strand. In this report we aimed to purify and study the biochemical properties of Leishmani amazonensis telomerase. In a first trial we used affinity chromatography with antisense 2′-O-methyl oligonucleotide without success since the Leishmania telomerase, similarly to Trypanosoma cruzi enzyme, was not eluted by competition, but instead, it remained bound to the column. Partially purified L. amazonensis telomerase activity was achieved by fractionation of extracts on complementary ion exchange and Heparin columns. Further purification of these fractions on a G-rich telomeric DNA affinity chromatography enriched for telomerase activity. The knowledge of telomerase characteristics in Leishmania could help to develop new strategies to overcome leishmaniasis.  相似文献   

14.
The preparation of RNA samples has become the rate-limiting step when performing genome-scale analyses by DNA microarrays. Methods to improve throughput of RNA isolation from tissues are needed. The effects of bead size and composition for disrupting mouse tissues have been evaluated in small centrifuge tubes and optimized for RNA production. The resulting process is inexpensive, resistant to cross-contamination, and amenable to robotic processing. After optimization, very-high-quality RNA can be produced. Comparisons between RNAs isolated by beadmilling (followed by solid-phase purification) and those by conventional isolation processes show that RNA produced by beadmilling is suitable for microarray analyses. Parallel implementation of beadmilling will enable a high-throughput tissue-to-RNA processing system for large-scale microarray analyses.  相似文献   

15.
Antibody immobilization on a solid surface is inevitable in the preparation of immunochips/sensors. Antibody-binding proteins such as proteins A and G have been extensively employed to capture antibodies on sensor surfaces with right orientations, maintaining their full functionality. Because of their synthetic versatility and stability, in general, small molecules have more advantages than proteins. Nevertheless, no small molecule has been used for oriented and specific antibody immobilization. Here is described a novel strategy to immobilize an antibody on various sensor surfaces by using a small antibody-binding peptide. The peptide binds specifically to the Fc domain of immunoglobulin G (IgG) and, therefore, affords a properly oriented antibody surface. Surface plasmon resonance analysis indicated that a peptide linked to a gold chip surface through a hydrophilic linker efficiently captured human and rabbit IgGs. Moreover, antibodies captured by the peptide exhibited higher antigen binding capacity compared with randomly immobilized antibodies. Peptide-mediated antibody immobilization was successfully applied on the surfaces of biosensor substrates such as magnetic particles and glass slides. The antibody-binding peptide conjugate introduced in this work is the first small molecule linker that offers a highly stable and specific surface platform for antibody immobilization in immunoassays.  相似文献   

16.
17.
There is an increasing demand for assay technologies that enable accurate, cost-effective, and high-throughput measurements of drug–target association and dissociation rates. Here we introduce a universal homogeneous kinetic probe competition assay (kPCA) that meets these requirements. The time-resolved fluorescence energy transfer (TR–FRET) procedure combines the versatility of radioligand binding assays with the advantages of homogeneous nonradioactive techniques while approaching the time resolution of surface plasmon resonance (SPR) and related biosensors. We show application of kPCA for three important target classes: enzymes, protein–protein interactions, and G protein-coupled receptors (GPCRs). This method is capable of supporting early stages of drug discovery with large amounts of kinetic information.  相似文献   

18.
端粒缩短见于星形细胞瘤发展过程中,但其长度在胶质母细胞瘤/细胞系相对稳定,提示胶质瘤细胞内存在端粒修复机制的可能性.为证实此点,利用端粒重复片段扩增技术(TRAP),对8株人/大鼠多形胶质母细胞系的蛋白提取液中端粒酶活性加以测定.结果显示:8例胶质瘤样本的反应液均可见端粒PCR扩增片段;用无DNase的RNase事先处理蛋白提取液,可明显降低或消除PCR产物的出现,说明TRAP反应中的PCR扩增是在端粒酶的介导下进行而非DNA污染或其它端粒修复因子所致.从而不但建立起检测人癌细胞内端粒酶活性的可靠方法,也为针对端粒酶的胶质母细胞瘤生物/药物治疗提供了实验依据.  相似文献   

19.
20.
Telomerase activity in cancer cells is commonly analyzed by a polymerase chain reaction (PCR)-based assay termed the telomeric repeat amplification protocol (TRAP). However, nonspecific inhibition of Taq polymerase during the PCR step is frequently observed in inhibitor analysis or drug screening. Thus, the removal of excess inhibitors prior to PCR is an essential step for the proper evaluation of telomerase inhibitory effects. Here, a size exclusion spin column was applied to remove small molecular weight inhibitors from the telomerase extension products. The spin column-added protocol, termed sTRAP, provides a more reliable estimation of the inhibitory effects of telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号