首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: BACKGROUND: Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. RESULTS: Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. CONCLUSION: NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin.  相似文献   

2.
Using immunocytochemistry and confocal laser microscopy, the distribution of nucleolin (protein C23) in neurons of the human substantia nigra was investigated. Fragments of the human midbrain (n = 8) with the verified lack of neurodegeneration were used in the study. The material was fixed in zinc ethanol formaldehyde, a special fixative that provides high preservation of antigenic determinants. New morphological data on the distribution of nucleolin in neurons of the human substantia nigra were obtained. Nucleolin was found in the nucleolus and nucleoplasm of dopaminergic neurons but not in the cytoplasm or cell surface. In the nucleolus and nucleoplasm, protein C23 is distributed irregularly in the form of some accumulations (clumps) with fuzzy borders. Moreover, nucleolin distribution varied in structurally similar neurons containing cytoplasmic neuromelanin. The Marinesco bodies typically not exhibiting nucleolin expression were identified in the nucleus, in addition to nucleoli, by confocal laser microscopy with simultaneous use of transmitted light detector. The findings can contribute to elucidation of the role of nucleolin in the specific functions of normal dopaminergic neurons in the human substantia nigra and assessment of probable involvement of C23 in the development of nucleolar stress and neurodegeneration.  相似文献   

3.
Intestinal development and homeostasis rely on the coordination of proliferation and differentiation of the epithelium. To better understand this process, we are studying Rbm19, a gene expressed in the gut epithelium that is essential for intestinal morphogenesis and differentiation in the zebrafish (Development 130, 3917). Here we analyzed the expression of Rbm19 in several biological contexts that feature proliferation/differentiation cell fate decisions. In the undifferentiated embryonic gut tube, Rbm19 is expressed throughout the epithelium, but then becomes localized to the crypts of Lieberkühn of the adult intestine. Consistent with its expression in adult crypt/progenitor cells, expression is widespread in human colorectal carcinomas and dividing Caco-2 cells. Its expression in Caco-2 cells recapitulates the in vivo pattern, declining when the cells undergo confluence-induced arrest and differentiation. Rbm19 protein localizes to the nucleolus during interphase and to the perichromosomal sheath during mitosis, in accordance with the pattern described for other nucleolar proteins implicated in ribosome biogenesis. Interestingly, the loss of nucleolar rbm19, nucleolin/C23, and nucleophosmin/B23 in confluent Caco-2 cells did not signify loss of nucleoli as detected by electron microscopy. Taken together, these data point to the nucleolus as a possible locus for regulating the proliferation/differentiation cell fate decision in the intestinal epithelium.  相似文献   

4.
5.
6.
Heat shock inhibits replicative DNA synthesis, but the underlying mechanism remains unknown. We investigated mechanistic aspects of this regulation in melanoma cells using a simian virus 40 (SV40)-based in vitro DNA replication assay. Heat shock (44 degrees C) caused a monotonic inhibition of cellular DNA replication following exposures for 5-90 min. SV40 DNA replication activity in extracts of similarly heated cells also decreased after 5-30 min of exposure, but returned to near control levels after 60-90 min of exposure. This transient inhibition of SV40 DNA replication was eliminated by recombinant replication protein A (rRPA), suggesting a regulatory process targeting this key DNA replication factor. SV40 DNA replication inhibition was associated with a transient increase in the interaction between nucleolin and RPA that peaked at 20-30 min. Because binding to nucleolin compromises the ability of RPA to support SV40 DNA replication, we suggest that the observed interaction reflects a mechanism whereby DNA replication is regulated after heat shock. The relevance of this interaction to the regulation of cellular DNA replication is indicated by the transient translocation in heated cells of nucleolin from the nucleolus into the nucleoplasm with kinetics very similar to those of SV40 DNA replication inhibition and of RPA-nucleolin interaction. Because the targeting of RPA by nucleolin in heated cells occurs in an environment that preserves the activity of several essential DNA replication factors, active processes may contribute to DNA replication inhibition to a larger degree than presently thought. RPA-nucleolin interactions may reflect an early step in the regulation of DNA replication, as nucleolin relocalized into the nucleolus 1-2 h after heat exposure but cellular DNA replication remained inhibited for up to 8 h. We propose that the nucleolus functions as a heat sensor that uses nucleolin as a signaling molecule to initiate inhibitory responses equivalent to a checkpoint.  相似文献   

7.
8.
Phosphorylation of nucleolin by a nucleolar type NII protein kinase   总被引:13,自引:0,他引:13  
Nucleolin [C23 or 100 kilodaltons (kDa)] is the major nucleolar phosphorylated protein in exponentially growing Chinese hamster ovary cells. A nucleolar cyclic nucleotide independent protein kinase copurified with nucleolin in a complex which could be dissociated by hydroxyapatite chromatography. The kinase was stimulated by spermine and inhibited by heparin and presented most of the properties of nuclear casein kinase NII. Kinetic analyses showed the apparent Km value for nucleolin (7 X 10(-4) mg/mL) to be lower than those for other casein kinase II substrates such as nuclear protein HMG 14 (0.15 mg/mL), topoisomerase I (0.025 mg/mL), or topoisomerase II (0.04 mg/mL). Similarly, Vmax values were higher for nucleolin than for other substrates. Nucleolin thus appears to be a natural preferential substrate of nucleolar casein kinase NII. The kinase phosphorylated nucleolin in vitro at serine residues in a 29-kDa CNBr fragment located near the amino terminus of the molecule. The enzyme labeled typical casein kinase II sites. These sites were found predominantly in two highly acidic tryptic fragments designated A (residues 21-49) and C (residues 180-221) which contained serines having at least two acidic residues on their carboxyl-terminal sides. These results demonstrate the existence in the nucleolus of a type of NII protein kinase that uses a protein involved in ribosome assembly as preferential substrate.  相似文献   

9.
It is well known that at the beginning of mitosis the nucleolus disassembles but then reassembles at the end of mitosis. However, the mechanisms of these processes are still unclear. In the present work, we show for the first time that selective inhibition of cyclin B-dependent kinase 1 (CDK1) by roscovitine induces premature assembly of the nucleolus in mammalian cells in metaphase. Treatment of metaphase cells with roscovitine induces formation of structures in their cytoplasm that contain major proteins of the mature nucleolus participating in rRNA processing, such as B23/nucleophosmin, C23/nucleolin, fibrillarin, Nop52, as well as partially processed (immature) 46-45S pre-rRNA. This effect is reproducible in cells of various types; this indicates that general mechanisms regulate early stages of the nucleolus reassembly with CDK1 participation in mammalian cells. Based on our and literature data, we suggest that inactivation of the CDK1-cyclin B complex at the end of mitosis results in dephosphorylation of B23/nucleophosmin and C23/nucleolin; this facilitates their interaction with pre-rRNA and leads to formation of insoluble supramolecular complexes--nucleolus-derived foci.  相似文献   

10.
11.
Nuclear targeting by the growth factor midkine   总被引:19,自引:0,他引:19       下载免费PDF全文
Ligand-receptor internalization has been traditionally regarded as part of the cellular desensitization system. Low-density lipoprotein receptor-related protein (LRP) is a large endocytosis receptor with a diverse array of ligands. We recently showed that LRP binds heparin-binding growth factor midkine. Here we demonstrate that LRP mediates nuclear targeting by midkine and that the nuclear targeting is biologically important. Exogenous midkine reached the nucleus, where intact midkine was detected, within 20 min. Midkine was not internalized in LRP-deficient cells, whereas transfection of an LRP expression vector restored midkine internalization and subsequent nuclear translocation. Internalized midkine in the cytoplasm bound to nucleolin, a nucleocytoplasmic shuttle protein. The midkine-binding sites were mapped to acidic stretches in the N-terminal domain of nucleolin. When the nuclear localization signal located next to the acidic stretches was deleted, we found that the mutant nucleolin not only accumulated in the cytoplasm but also suppressed the nuclear translocation of midkine. By using cells that overexpressed the mutant nucleolin, we further demonstrated that the nuclear targeting was necessary for the full activity of midkine in the promotion of cell survival. This study therefore reveals a novel role of LRP in intracellular signaling by its ligand and the importance of nucleolin in this process.  相似文献   

12.
13.
The monocyte-like cell lines Mono Mac 6 (MM6) and U937 bind Amadori-modified proteins via fructoselysine (FL)-specific sites with molar masses of 110, 150 and 200 kDa, which can specifically be isolated by an affinity method with magnetobeads coated with glycated polylysine. Using Western blots developed with different anti-nucleophosmin antisera, MS-analysis and immunohistochemistry, we show that the nucleolar protein nucleophosmin is also localized in the cell membrane and is part of the 150- and 200-kDa membrane protein fractions of FL-specific binding membrane proteins. This is the first evidence that nucleophosmin is not only existing in the nucleolus and cytoplasm, but also, like nucleolin, is in the cell membrane.  相似文献   

14.
Nucleolin and fibrillarin are two histone-like major proteins in the nucleolus that were found to be overexpressed in proliferating cells. Using specific antibodies to either nucleolin or fibrillarin flow cytometric, measurements were carried out to demonstrate quantitative changes of these proteins during lymphocyte mitogenic activation and differentiation of HL-60 promyelocytic leukaemia cells. The expression of nucleolin increased during lymphocyte stimulation and decreased slowly but constantly in the course of differentiation of HL-60 cells. Expression of fibrillarin reached a maximum in the first cell cycle and then dropped to a basic level in stimulated lymphocytes. Compared to nucleolin, the level of fibrillarin decreased more rapidly and more extensively in differentiating HL-60 cells. The data support other observations that nucleolin is a stabile structural protein at the ribosomal genes while fibrillarin may have a more specific functional role in nucleologenesis and ribosome production.  相似文献   

15.
16.
Nucleolin (713 aa), a major nucleolar protein, presents two structural domains: a N-terminus implicated in interaction with chromatin and a C-terminus containing four RNA-binding domains (RRMs) and a glycine/arginine-rich domain mainly involved in pre-rRNA packaging. Furthermore, nucleolin was shown to shuttle between cytoplasm and nucleolus. To get an insight on the nature of nuclear and nucleolar localization signals, a set of nucleolin deletion mutants in fusion with the prokaryotic chloramphenicol acetyltransferase (CAT) were constructed, and the resulting chimeric proteins were recognized by anti-CAT antibodies. First, a nuclear location signal bipartite and composed of two short basic stretches separated by eleven residues was characterized. Deletion of either motifs renders the protein cytoplasmic. Second, by deleting one or more domains implicated in nucleolin association either with DNA, RNA, or proteins, we demonstrated that nucleolar accumulation requires, in addition to the nuclear localization sequence, at least two of the five RRMs in presence or absence of N-terminus. However, in presence of only one RRM the N-terminus allowed a partial targeting of the chimeric protein to the nucleolus.  相似文献   

17.
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.  相似文献   

18.
Asymmetric self-renewal and commitment of satellite stem cells in muscle   总被引:20,自引:0,他引:20  
Kuang S  Kuroda K  Le Grand F  Rudnicki MA 《Cell》2007,129(5):999-1010
Satellite cells play a central role in mediating the growth and regeneration of skeletal muscle. However, whether satellite cells are stem cells, committed progenitors, or dedifferentiated myoblasts has remained unclear. Using Myf5-Cre and ROSA26-YFP Cre-reporter alleles, we observed that in vivo 10% of sublaminar Pax7-expressing satellite cells have never expressed Myf5. Moreover, we found that Pax7(+)/Myf5(-) satellite cells gave rise to Pax7(+)/Myf5(+) satellite cells through apical-basal oriented divisions that asymmetrically generated a basal Pax7(+)/Myf5(-) and an apical Pax7(+)/Myf5(+) cells. Prospective isolation and transplantation into muscle revealed that whereas Pax7(+)/Myf5(+) cells exhibited precocious differentiation, Pax7(+)/Myf5(-) cells extensively contributed to the satellite cell reservoir throughout the injected muscle. Therefore, we conclude that satellite cells are a heterogeneous population composed of stem cells and committed progenitors. These results provide critical insights into satellite cell biology and open new avenues for therapeutic treatment of neuromuscular diseases.  相似文献   

19.
The development of muscle cells involves the action of myogenic determination factors. In this report, we show that human skeletal muscle tissue contains, besides the previously described Myf-5, two additional factors Myf-3 and Myf-4 which represent the human homologues of the rodent proteins MyoD1 and myogenin. The genes encoding Myf-3, Myf-4 and Myf-5 are located on human chromosomes 11, 1, and 12 respectively. Constitutive expression of a single factor is sufficient to convert mouse C3H 10T1/2 fibroblasts to phenotypically normal muscle cells. The myogenic conversion of 10T1/2 fibroblasts results in the activation of the endogenous MyoD1 and Myf-4 (myogenin) genes. This observation suggests that the expression of Myf proteins leads to positive autoregulation of the members of the Myf gene family. Individual myogenic colonies derived from MCA C115 cells (10T1/2 fibroblast transformed by methylcholanthrene) express various levels of endogenous MyoD1 mRNA ranging from nearly zero to high levels. The Myf-5 gene was generally not activated in 10T1/2 derived myogenic cell lines but was expressed in some MCA myoblasts. In primary human muscle cells Myf-3 and Myf-4 mRNA but very little Myf-5 mRNA is expressed. In mouse C2 and P2 muscle cell lines MyoD1 is abundantly synthesized together with myogenin. In contrast, the rat muscle lines L8 and L6 and the mouse BC3H1 cells express primarily myogenin and low levels of Myf-5 but no MyoD1. Myf-4 (myogenin) mRNA is present in all muscle cell lines at the onset of differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号