首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA甲基化与脂肪组织生长发育   总被引:1,自引:0,他引:1  
DNA甲基化作为一种重要的表观遗传学修饰方式,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用。DNA甲基化最重要的作用是调控基因表达,它是细胞调控基因表达的重要表观遗传机制之一。近年来的研究发现,DNA甲基化在脂肪组织生长发育以及肥胖症发生过程中发挥着重要作用。DNA甲基化通过调控脂肪细胞分化转录因子、转录辅助因子以及其他脂肪代谢相关基因的表达,从而调控脂肪组织的生长发育。该文综述了脂肪组织生长发育过程中DNA甲基化的最新研究进展,探讨了脂肪组织DNA甲基化的研究趋势和未来发展方向。  相似文献   

2.
DNA methylation could shape phenotypic responses to environmental cues and underlie developmental plasticity. Environmentally induced changes in DNA methylation during development can give rise to stable phenotypic traits and thus affect fitness. In the laboratory, it has been shown that the vertebrate methylome undergoes dynamic reprogramming during development, creating a critical window for environmentally induced epigenetic modifications. Studies of DNA methylation in the wild are lacking, yet are essential for understanding how genes and the environment interact to affect phenotypic development and ultimately fitness. Furthermore, our knowledge of the establishment of methylation patterns during development in birds is limited. We quantified genome‐wide DNA methylation at various stages of embryonic and postnatal development in an altricial passerine bird, the great tit Parus major. While, there was no change in global DNA methylation in embryonic tissue during the second half of embryonic development, a twofold increase in DNA methylation in blood occurred between 6 and 15 days posthatch. Though not directly comparable, DNA methylation levels were higher in the blood of nestlings compared with embryonic tissue at any stage of prenatal development. This provides the first evidence that DNA methylation undergoes global change during development in a wild bird, supporting the hypothesis that methylation mediates phenotypic development. Furthermore, the plasticity of DNA methylation demonstrated during late postnatal development, in the present study, suggests a wide window during which DNA methylation could be sensitive to environmental influences. This is particularly important for our understanding of the mechanisms by which early‐life conditions influence later‐life performance. While, we found no evidence for differences in genome‐wide methylation in relation to habitat of origin, environmental variation is likely to be an important driver of variation in methylation at specific loci.  相似文献   

3.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.  相似文献   

4.
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.  相似文献   

5.
Experimental studies demonstrated that maternal exposure to certain environmental and dietary factors during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism by which maternal nutrients affect the phenotype of their offspring in both honeybee and agouti mouse models. Phenotypic changes through DNA methylation can be linked to folate metabolism by the knowledge that folate, a coenzyme of one-carbon metabolism, is directly involved in methyl group transfer for DNA methylation. During the fetal period, organ-specific DNA methylation patterns are established through epigenetic reprogramming. However, established DNA methylation patterns are not immutable and can be modified during our lifetime by the environment. Aberrant changes in DNA methylation with diet may lead to the development of age-associated diseases including cancer. It is also known that the aging process by itself is accompanied by alterations in DNA methylation. Diminished activity of DNA methyltransferases (Dnmts) can be a potential mechanism for the decreased genomic DNA methylation during aging, along with reduced folate intake and altered folate metabolism. Progressive hypermethylation in promoter regions of certain genes is observed throughout aging, and repression of tumor suppressors induced by this epigenetic mechanism appears to be associated with cancer development. In this review, we address the effect of folate on early development and aging through an epigenetic mechanism, DNA methylation.  相似文献   

6.
王丽波  王芳  张岩 《生物信息学》2014,12(3):213-217
DNA甲基化是重要的表观遗传标记之一,在转录调控中起直接作用。DNA甲基化的异常与癌症的发生发展密切相关。高通量测序使得在单碱基分辨率下检测全基因组的DNA甲基化水平成为可能。本文基于临近CpGs位点甲基化水平的相关性挖掘DNA甲基化连锁区域。结果发现DNA甲基化连锁区域的甲基化水平和模式在癌症中存在异常,而且显著富集到分化/发育相关的生物学功能。DNA甲基化连锁区域的挖掘有助于对具有生物学功能的表观遗传标记的进一步理解,有助于对癌症诊断的表观遗传标记的挖掘。  相似文献   

7.
DNA甲基化作为一种重要的非永久性但相对长期可遗传的基因修饰,在维持细胞正常的转录活性、DNA损伤修复能力以及在遗传印记、胚胎发育和肿瘤的发生发展中都有不可替代的作用,是分子生物学及医学领域的研究热点。近年来随着高通量测序、表观遗传编辑以及结构分析等技术的飞速发展,对DNA甲基化分子机制层面的研究进一步深入。本研究总结了近年来对DNA甲基化分子机制的相关研究,归纳了全球范围内对DNA甲基化的位点、序列背景与范围近年来的研究进展,也归纳了近年来对影响DNA甲基化的因素的研究,以期对DNA甲基化这一表观遗传学热点进行深入的学习探讨。  相似文献   

8.
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.  相似文献   

9.
Epigenetic marks in the form of DNA methylation are involved in the development of germ cells and are important in the maintenance of fertility. However, the controlling system of the on-off switch for DNA methylation largely remains unclear. In this study, the extent of cytosine methylation during the meiotic prophase I in David lily is assessed using high pressure liquid chromatography to evaluate the DNA methylation rates. Comparing the degree of DNA methylation before, during, and after synizesis, both de novo methylation and demethylation occurred. Mainly the methylation level decreased by 21.3% (from 54.8 to 33.5%) during synizesis in the pollen mother cells. The developmental timing of genome-wide DNA methylation acquisition during pollen mother cell development is clarified in this paper. The relative amounts of 5-methyl-deoxycytidine of global methylation in leaf DNA in David lily were also higher than in other species reported.  相似文献   

10.
植物DNA甲基化研究进展   总被引:3,自引:0,他引:3  
DNA基化是一种重要的表观遗传修饰方式,强烈地影响植物染色质结构和基因的表达,因此植物DNA基化的研究对植物生长发育及进化过程的研究发展起着重要作用。本文概述了植物DNA基化的特征,并对植物DNA基化的发生机制、生物学功能、检测分析方法等方面进行了综述,旨在深入了解DNA基化对植物的影响。  相似文献   

11.
12.
Epigenetics pertains to heritable alterations in genomic structural modifications without altering genomic DNA sequence. The studies of epigenetic mechanisms include DNA methylation, histone modifications, and microRNAs. DNA methylation may contribute to silencing gene expression which is a major mechanism of epigenetic gene regulation. DNA methylation regulatory mechanisms in lens development and pathogenesis of cataract represent exciting areas of research that have opened new avenues for association with aging and environment. This review addresses our current understanding of the major mechanisms and function of DNA methylation in lens development, age-related cataract, secondary cataract, and complicated cataract. By understanding the role of DNA methylation in the lens disease and development, it is expected to open up a new therapeutic approach to clinical treatment of cataract.  相似文献   

13.
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.  相似文献   

14.
DNA甲基化与克隆动物的发育异常   总被引:3,自引:1,他引:2  
杨荣荣  李相运 《遗传》2007,29(9):1043-1048
通过核移植技术得到的大多数克隆动物在出生前就已经死亡, 只有极少数可以发育至妊娠期末或者存活至成年, 即使是存活下来的克隆动物也伴有不同程度的发育缺陷和表型异常。DNA甲基化是支配基因正常表达的一种重要的表观遗传修饰方式, 是调节基因组功能的重要手段, 在胚胎的正常发育过程中具有显著作用。通过对DNA甲基化模式的研究, 人们发现克隆动物中存在着异常的DNA甲基化状态, 而这些异常的DNA甲基化模式可能就是导致克隆胚早期死亡以及克隆动物发育畸形的主要原因。文章主要论述了DNA甲基化的作用, 克隆动物中异常的DNA甲基化模式, 以及造成克隆胚胎甲基化异常的原因等问题。  相似文献   

15.
DNA methylation is a prevalent epigenetic modification in vertebrates, and it has been shown to be involved the regulation of gene expression and embryo development. However, it remains unclear how DNA methylation regulates sexual development, especially in species without sex chromosomes. To determine this, we utilized zebrafish to investigate DNA methylation reprogramming during juvenile germ cell development and adult female-to-male sex transition.We reveal that primordial germ cells(PGCs) undergo significant DNA methylation reprogramming during germ cell development, and the methylome of PGCs is reset to an oocyte/ovary-like pattern at 9 days post fertilization(9 dpf). When DNA methyltransferase(DNMT) activity in juveniles was blocked after 9 dpf, the zebrafish developed into females. We also show that Tet3 is involved in PGC development. Notably, we find that DNA methylome reprogramming during adult zebrafish sex transition is similar to the reprogramming during the sex differentiation from 9 dpf PGCs to sperm. Furthermore, inhibiting DNMT activity can prevent the female-to-male sex transition, suggesting that methylation reprogramming is required for zebrafish sex transition. In summary, DNA methylation plays important roles in zebrafish germ cell development and sexual plasticity.  相似文献   

16.
DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial. Here we have addressed this issue by applying the techniques of Southwestern immunoblotting and immunohistochemistry with an anti-5-methylcytosine antibody to the examination of DNA methylation in early zebrafish embryos. These techniques have recently been utilized to demonstrate that development-specific changes in genomic DNA methylation also occur in Drosophila melanogaster and Dictyostelium discoideum, both organisms for which DNA methylation was previously not thought to occur. Our data demonstrate that genome-wide changes in DNA methylation occur during early zebrafish development. Although zebrafish sperm DNA is strongly methylated, the zebrafish genome is not detectably methylated through cleavage and early blastula stages but is heavily remethylated in blastula and early gastrula stages.  相似文献   

17.
DNA甲基化的生物信息学研究进展   总被引:6,自引:0,他引:6  
作为重要的表观遗传学现象之一,DNA甲基化对基因的表达发挥重要的调控功能.随着高通量检测技术的不断发展,对DNA甲基化的生物信息学研究也成为DNA甲基化研究中的一个非常活跃的热点.对生物信息学在DNA甲基化状态的预测、CpG岛不易被甲基化的机制研究、探索DNA甲基化同其他表观遗传学现象之间的关系以及DNA异常甲基化同癌症的发生和发展之间的关系等方面的研究进展进行综述.  相似文献   

18.
19.
The DNA methylome is re-patterned during discrete phases of vertebrate development. In zebrafish, there are 2 waves of global DNA demethylation and re-methylation: the first occurs before gastrulation when the parental methylome is changed to the zygotic pattern and the second occurs after formation of the embryonic body axis, during organ specification. The occupancy of the histone variant H2A.Z and regions of DNA methylation are generally anti-correlated, and it has been proposed that H2A.Z restricts the boundaries of highly methylated regions. While many studies have described the dynamics of methylome changes during early zebrafish development, the factors involved in establishing the DNA methylation landscape in zebrafish embryos have not been identified. We test the hypothesis that the zebrafish ortholog of H2A.Z (H2afv) restricts DNA methylation during development. We find that, in control embryos, bulk genome methylation decreases after gastrulation, with a nadir at the bud stage, and peaks during mid-somitogenesis; by 24 hours post -fertilization, total DNA methylation levels return to those detected in gastrula. Early zebrafish embryos depleted of H2afv have significantly more bulk DNA methylation during somitogenesis, suggesting that H2afv limits methylation during this stage of development. H2afv deficient embryos are small, with multisystemic abnormalities. Genetic interaction experiments demonstrate that these phenotypes are suppressed by depletion of DNA methyltransferase 1 (Dnmt1). This work demonstrates that H2afv is essential for global DNA methylation reprogramming during early vertebrate development and that embryonic development requires crosstalk between H2afv and Dnmt1.  相似文献   

20.
DNA methylation increases throughout Arabidopsis development   总被引:9,自引:0,他引:9  
We used amplified fragment length polymorphisms (AFLP) to analyze the stability of DNA methylation throughout Arabidopsis development. AFLP can detect genome-wide changes in cytosine methylation produced by DNA demethylation agents, such as 5-azacytidine, or specific mutations at the DDM1 locus. In both cases, cytosine demethylation is associated with a general increase in the presence of amplified fragments. Using this approach, we followed DNA methylation at methylation sensitive restriction sites throughout Arabidopsis development. The results show a progressive DNA methylation trend from cotyledons to vegetative organs to reproductive organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号