首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
* BACKGROUND AND AIMS: The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. * METHODS: Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. * KEY RESULTS: Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. * CONCLUSIONS: It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy.  相似文献   

2.
Synopsis The influence of the light:dark cycle and temperature on the embryonic development, especially diapause, of the annual fish Nothobranchius korthausae was investigated. The variability of the frequency of diapause II during constant L:D cycle and temperature, but at different times of the year, was also studied. In agreement with previous studies it appeared that diapause I does practically not occur in N. korthausae (and other Nothobranchius species), even under sub-optimal conditions which are known to induce diapause II and III. Only at very low temperatures, a first developmental arrest could be induced during the dispersed phase, as well as during the reaggregation phase. Diapause II and III can be induced more easily, by exposing the embryos to low (sub-optimal) temperatures and short light periods (or constant darkness). Both diapauses are inhibited or terminated at high temperature and long light periods (12L:12D). The occurrence of an indirect light:dark response via the adult fishes could not be demonstrated. At moderate temperatures and in constant darkness (or short light periods) considerable variability in diapause II-frequency was observed. This could be an intrinsic feature of annual fish development, constituting a strategy for better survival of the species.  相似文献   

3.
In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non-crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant-to-plant variability in the studied isogenic line of the Columbia ecotype: 100-fold differences in leaf area among plants sown on the same date were commonly observed at a given date. These differences disappeared in mature leaves, suggesting that they were due to a variability in plant developmental stage. The whole population could therefore be represented by any group of synchronous plants labelled at the two-leaf stage and followed during their development. Leaf initiation rate, duration of leaf expansion and maximal relative leaf expansion rate varied considerably among experiments performed at different temperatures (from 6 to 26 degrees C) but they were linearly related to temperature in the range 6-26 degrees C, with a common x-intercept of 3 degrees C. Expressing time in thermal time with a threshold temperature of 3 degrees C unified the time courses of leaf initiation and of individual leaf development for plants grown at different temperatures and experimental conditions. The two leaves studied (leaf 2 and leaf 6) had a two-phase development, with an exponential phase followed by a phase with decreasing relative elongation rate. Both phases had constant durations for a given leaf position if expressed in thermal time. Changes in temperature caused changes in both the rate of development and in the expansion rate which mutually compensated such that they had no consequence on leaf area at a given thermal time. The resulting model of leaf development was applied to ten experiments carried out in a glasshouse or in a growth chamber, with plants grown in soil or hydroponically. Because it predicts accurately the stage of development and the relative expansion rate of any leaf of the rosette, this model facilitates precise planning of sampling procedures and the comparison of treatments in growth analyses.  相似文献   

4.
Lygus hesperus Knight (Hemiptera: Miridae) is a key pest of fruit and vegetable crops, forages, and cotton (Gossypium spp.) in the western United States. Accurate models describing relationships between temperature and L. hesperus development are critical to the study of seasonal L. hesperus population dynamics. Development of L. hesperus nymphs was assessed at nine constant temperatures from 10 to 37.8 degrees C. The relationships between temperature and development for each L. hesperus instar, and for the entire nymphal stage, were best described by six-parameter biophysical models indicating both low- and high-temperature inhibition of development. Development rates asymptotically approached zero with decreasing temperature in the lower thermal range, and decreased with increasing temperatures above 32.2 degrees C. Nymphs did not survive from egg hatch to adulthood at either 10 or 37.8 degrees C, and nymph mortality was > 90% at both 12.8 and 35.0 degrees C. The fifth instar exhibited the longest stadium, whereas the shortest stadia were associated with the second and third instars. Development rates of males and females did not differ, and the ratio of males to females was not different from 1:1 at any temperature. Our temperature-dependent development rate models for L. hesperus nymphs will facilitate control of insect physiological age in controlled laboratory experiments, and should be useful in planning and interpreting field studies on L. hesperus population dynamics.  相似文献   

5.
气候变化对甘肃省粮食生产的影响研究进展   总被引:2,自引:0,他引:2  
甘肃省气候自1986年起向整体暖干化、局部暖湿化转型突变.与1960年相比,转型后2010年平均气温升高了1.1 ℃,平均降水量减少了28 mm,干旱半干旱区南移约50 km.气候变暖使甘肃省主要作物生育期有效积温增加,生长期延长,熟性、布局和种植制度改变,宜种区和种植海拔增加,多熟制北移,夏粮面积缩小,秋粮面积增大.弱冬性、中晚熟品种逐步取代强冬性、中早熟品种,有利于提高光温利用率,增加产量.暖湿型气候增加了绿洲灌区作物的气候生产力,暖干型气候降低了雨养农业区的气候产量,水分和肥力条件是决定因素.以提高有限降水利用率和利用效率、改善和提升土壤质量及肥力为核心,选育强抗逆、弱冬性、中晚熟、高水分利用效率的作物新品种,建立适温、适水的种植结构和种植制度,是甘肃省应对气候变化进行粮食生产的主要发展方向.  相似文献   

6.
Agricultural development has contributed to the global erosion of biodiversity. The farmed matrix in agricultural landscapes can and must be important for the conservation of biodiversity and provision of ecosystem services, but this assumes that the matrix has biodiversity value. We investigate the contribution of pastures and crops to ant diversity on mixed farms in eastern Australia. Remnant native woodlands, pastures of native grasses, sown pastures of exotic species, and crops were sampled for epigaeic ants on 3 farms using pitfall trapping. Ants were sorted to species and assigned to functional groups. Ant species richness and functionality followed consistent patterns across the three farms. Significant differences in assemblage composition were found between the major habitat types, and in species richness between woodland and non-woodland habitats (native and sown pastures, and crops), which did not contribute appreciably to farm-level biodiversity: 1–10% of species were found only in the farmed matrix. Insect conservation in agricultural landscapes is important for the provision of ecosystem services, including pest control and the maintenance of soil condition. As the farmed matrix makes only a modest contribution to farm-scale biodiversity, appropriate management of the unfarmed parts of the landscape is critical and habitat restoration may be warranted where the level of native vegetation is low. Maintaining a mix of land uses within the production matrix will also be a necessary bet-hedging strategy in a world with changing climates, commodities, community expectations and farming practices.  相似文献   

7.
Changes in a range of chlorophyll fluorescence parameters weremonitored for leaves of crops of three Zea mays cultivars (MO17,CB3 and LG11) during early canopy development when large fluctuationsin air temperatures occur. Crops were sown on 1 May 1993 andmeasurements made between 17 May and 7 June. Measurements ofthe ratio of variable to maximal fluorescence of dark-adaptedleaves (Fv/Fm) and the quantum efficiency of photosystem IIphotochemistry (  相似文献   

8.
Restoration of plant communities can be hindered by the legacy of previously established invaders, despite their physical removal from the community. Current evidence, mainly built on short‐term greenhouse experiments, suggests that Sericea lespedeza (Lespedeza cuneata) invasion not only suppresses native plant species, but also alters soil conditions in host communities. As a result, L. cuneata may create a soil legacy that impedes plant community restoration. We examined the response of a Kansas grassland following L. cuneata removal to determine if historical L. cuneata abundance affected (1) plant community composition and (2) the establishment of additional native species. To address these questions, L. cuneata seeds were sown into 300 plots at a wide range of densities under different combinations of simulated disturbance and soil fertilization. After a three‐year establishment period, L. cuneata was removed from the community, and 13 native forb species were sown into all plots. Over 4 years, we found little evidence for a soil legacy effect that influenced community response post‐removal. Although there was a detectable relationship between community composition and L. cuneata, the variation explained by this relationship was very low. Similarly, the establishment of sown native species was unrelated to the historical abundance of L. cuneata. These results indicate that, regardless of initial density, L. cuneata does not impede plant community recovery in this system if effectively controlled within the first 3 years of invasion, and legacy effects inferred from greenhouse experiments may not translate to impacts on the plant community in the field.  相似文献   

9.
Trends and temperature response in the phenology of crops in Germany   总被引:10,自引:0,他引:10  
The phenology of 78 agricultural and horticultural events from a national survey in Germany spanning the years 1951–2004 is examined. The majority of events are significantly earlier now than 53 years ago, with a mean advance of 1.1–1.3 days per decade. The mean trends for 'true phases', such as emergence and flowering, of annual and perennial crops are not significantly different, although more trends (78% vs. 46%) are significant for annual crops. We attempt to remove the influence of technological advance or altered farming practices on phenology by detrending the respective time series by linear regression of date (day number) on year. Subsequently, we estimate responses to mean monthly and seasonal temperature by correlation and regression in two ways; with and without removing the year trend first. Nearly all (97%) correlation coefficients are negative, suggesting earlier events in warmer years. Between 82% and 94% of the coefficients with seasonal spring and summer temperatures are significant. The conservative estimate (detrended) of mean temperature response against mean March–May temperature (−3.73 days °C−1) is significantly less than the full estimate (−4.31 days °C−1), the 'true' size of phenological temperature response may lie in between. Perennial crops exhibited a significantly higher temperature response to mean spring temperature than the annual crops.  相似文献   

10.
Although outbreaks of rare species are unusual, several insect species have become emerging pests probably due to the ongoing environmental changes. Barbitistes vicetinus was first described in 1993 as an endemic bush-cricket of north-east Italy and was considered rare until 2008, when it became an established pest, causing severe damages to forests and crops. The possible role of temperature in changing its life cycle has still to be fully understood. Here, we explored the effect of summer temperature on egg diapause and the effect of winter temperature on egg survival. Field observations showed that the proportion of embryos that can complete development at the end of summer ranged from zero to nearly 90% depending on summer temperatures. A substantial shift in the rate of development from 20% to nearly 80% occurred in a thermal range of about 1 °C. On the contrary, overwinter egg survival was high and constant (90%) across a wide range of winter temperatures that go well beyond both the cold and warm thermal limits of the current species range. Overall, the results suggest a potential key role of summer temperature warming on the outbreak propensity of this species that is able to switch from a multiyear to an annual life cycle with just a 1–2 °C warming.  相似文献   

11.
1. Increasing temperature and invading species may interact in their effects on communities. In this study, we investigated how rising temperatures alter larval interactions between a naturally range‐expanding dragonfly, Crocothemis erythraea, and a native northern European species, Leucorrhinia dubia. Initial studies revealed that C. erythraea grow up to 3.5 times faster than L. dubia at temperatures above 16 °C. As a result, we hypothesised that divergent temperature responses would lead to rapid size differences between coexisting larvae and, consequently, to asymmetric intraguild predation at higher ambient temperatures. 2. Mortality and growth rates were measured in interaction treatments (with both species present) and non‐interaction controls (one species present) at four different temperature regimes: at an ambient temperature representative of central Germany, where both species overlap in distribution, and at temperatures increased by 2, 4 and 6 °C. 3. The mortality of C. erythraea did not differ between treatment and control. In contrast, mortality of L. dubia remained similar over all temperatures in the controls, but increased with temperature in the presence of the other species and was significantly higher there than in the controls. We concluded that L. dubia suffered asymmetric intraguild predation, particularly at increased temperature. Reduced growth rate of L. dubia in the interaction treatment at higher temperatures also suggested asymmetric competition for prey in the first phase of the experiment. 4. The results imply that the range expansion of C. erythraea may cause reduction in population size of syntopic L. dubia when temperature rises by more than 2 °C. The consequences for future range patterns, as well as other factors that may influence the interaction in nature, are discussed.  相似文献   

12.
Evidence of prehistoric domestication of plants native to southwestern United States is rare. Presented here are archaeological, historic and contemporary ethnobotanical data suggesting that a native grain, Panicum sonorum,was harvested, sown and culturally selected in the Sonoran Desert Region. This indicator crop, other new clarifications of indigenous crops, and water management practices all point to the distinctiveness of the region’s agricultural complex. As redefined here, the Sonoran Desert Agricultural Region is diverse in both native crops and in cultivars of introduced crops originating elsewhere.  相似文献   

13.
This paper reports on the search for inoculum sources of Mycocentrospora acerina on caraway (Carum carvi L.). Obvious suspects are cover crops of biennial caraway and preceding crops of annual caraway. Other suspects are weeds in or alongside the field. Finally, survival structures of the fungus, chlamydospore chains, packed in plant debris or naked, are suspected. M. acerina is able to infect many plant species, including cover crops of caraway such as spinach for seed production and peas. However, the agronomical suitability of a crop to serve as a cover crop of biennial caraway proved to be a more important factor in determining caraway yield than the susceptibility of the cover crop to M. acerina. This finding was corroborated by the fact that spinach and peas as preceding crops had no significant effects on M. acerina development in spring caraway sown the next year. Dill, barley and four weed species were found as new hosts of M. acerina. The role of weed hosts, susceptible crops and plant debris in the survival of the fungus in years without caraway is discussed. Caraway sown on soil containing infested caraway straw, infested debris of other plant species or chlamydospores grown in pure culture, became infected by M. acerina. Only high inoculum densities of chlamydospores in the soil caused severe damping-off of caraway seedlings. The opportunity for disease management by agronomical means is quite limited.  相似文献   

14.
Variation in aboveground net primary production (ANPP) is usually studied across wide environmental gradients focusing on spatial averages of zonal natural communities. We studied the spatial and temporal variation of ANPP of upland sown pastures and lowland natural grasslands across a narrow gradient of precipitation and temperature. The Flooding Pampa (Argentina) encompasses an 850–1000 mm range of mean annual precipitation and a 13.8–16.0°C range of mean annual temperature. For 15 100 × 100 km cells, we obtained mean monthly precipitation, temperature, and paddock-level ANPP of upland pastures and lowland grasslands during 8 years. Mean annual ANPP of lowland grasslands and upland sown pastures was positively related to mean annual precipitation. ANPP of upland pastures was 60–80% larger and increased more steeply with mean annual precipitation. ANPP seasonality also changed across the gradient. In lowland grasslands, as mean annual precipitation increased, ANPP monthly maximum increased, minimum decreased, and the duration of the growing season shortened. In contrast, in upland pastures, ANPP monthly maximum was constant, minimum increased, and the growing season lengthened with increasing precipitation. ANPP was more stable across years for lowland grasslands than for upland pastures. The response of annual ANPP to current-year precipitation decreased across the gradient, while the importance of the previous-year precipitation increased. In summary, we found strong spatial and temporal patterns of ANPP across a narrow environmental gradient. In addition, landscape position and species composition heavily influenced those patterns.  相似文献   

15.
The expected effects of climate change on wheat development   总被引:3,自引:0,他引:3  
Air temperature and the atmospheric concentrations of carbon dioxide are expected to rise. These two factor have a great potential to affect development, growth and yield of crops, including wheat. Rising air temperature may affect wheat development more than rising atmospheric CO2 as there is not yet evidence that elevated CO2 concentrations can directly induce changes in wheat development. In winter wheat, temperature has a complex effect on development due to its strong interaction with vernalization and photoperiod. In this paper, potential effects of rising temperature on the development of winter wheat from sowing to heading are considered in the light of this complex controlling mechanism. Data from a large series of field trials made in Romania is analysed at first and, subsequently, the IATA-Wheat Phenology model is used to calculate the impact of air warming on wheat development under different climate change scenarios. Data from the field trials showed very clearly the occurrence of a complex temperature/photoperiod/vernalization interaction for field sown crops and demostrated that the photoperiodic and vernalization responses have a key role in controlling the duration of the emergence-heading period. Temperature plays, instead, a central role in controlling seed germination and crop emergence as well as leaf inititiation and leaf appearance rate. The results of model analysis showed very well that the impact of an even or uneven distribution of warning effects may be very different. In the first case, the model predicted that the duration of the vegetative period was at least partly reduced in some years. In the second case, the model suggested that if warming will be more pronounced in winter than in spring, as predicted for some areas of the world by General Circulation Models, we may expect an increase in the duration of the vegetative phase of growth. On the contrary, in case of a spring warming but unchanged winter temperatures, we may expect a substantial decrease in the duration of the vegetative period.  相似文献   

16.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   

17.
Abstract. The effect of growth temperatures on quantum yield (φ) was examined for leaves at different stages of development within the immature canopies of two crops of field grown maize ( Zea mays cv. LG11) sown on 3 May and 20 June 1990. During the period of 23 to 49d after sowing, the crop sown on the 3 May experienced temperatures below 10°C on 19 occasions compared with only two for the crop sown on 20 June. A period of severe chilling at the end of May and the beginning of June was associated with a marked reduction in φ for all leaves in the early-sown crop. This chill-induced depression in φ was greater in recently emerged than more mature leaves in the canopy and was found to be accompanied by modifications in the polypeptide profiles of thylakoids isolated from the leaves. During the chilling period, decreases in some polypeptides, notably in the range of 41–42 and 20kDa apparent molecular size, and increases of polypeptides of c. 15–16kDa were observed compared with leaves developing at warmer temperatures in July. The efficiency of converting intercepted radiation into dry matter (conversion efficiency) was 42% lower in the early- than late-sown crop, but no significant relationship between conversion efficiency and quantum yield was found in either treatment.  相似文献   

18.
中国北方气候暖干化对粮食作物的影响及应对措施   总被引:35,自引:0,他引:35  
东北、华北和西北50a来的平均气温增幅高于全国平均水平,气候变暖明显,尤其冬季增温最显著。区域增暖的极端最低气温远比极端最高气温的贡献大。东北、华北大部、西北东部降水量明显减少,平均每10a减少20—40mm,尤其春夏季减少最明显。这种趋势一直延续到20世纪90年代以后,干旱化趋势非常突出。在综述我国北方现代气候变化基本特征是暖干化的基础上,重点阐述了喜凉作物冬小麦、春小麦、马铃薯和喜温作物水稻、玉米、谷子、糜子等7种主要粮食作物的生长发育、品种熟性、种植区域与面积、产量与品质等对气候暖干化的响应特征。揭示了气候暖干化使春播作物播期提早,苗期生长发育速度加快,营养生长期提前,生殖生长期和全生育期延长;秋作物发育期推迟,生殖生长期和全生长期延长;越冬作物播期推迟,越冬死亡率降低,种植风险减少,春初提前返青,生殖生长期提早,全生育期缩短。使作物适宜种植区域向高纬度高海拔扩展;品种熟性向偏中晚熟高产品种发展;喜温作物和越冬作物以及冷凉气候区的作物种植面积迅速扩大;在旱作区种植不较耐旱的玉米、春小麦等作物种植面积受到制约。对雨养农业区的作物气候产量影响严重,尤其对不够耐旱的小麦和玉米的气候产量受影响最大;对较耐旱的谷子、糜子、马铃薯等影响较轻。从作物属性而言,对喜温作物水稻、玉米和越冬作物冬小麦有利于气候产量提高;对喜凉作物春小麦和马铃薯的气候产量将产生不利影响。同时,提出了从5个方面应对气候暖干化的技术措施,调整作物种植结构,确保粮食生产安全;根据不同气候年型调整各种作物种植比例;针对不同气候区域发展优势作物和配置作物种植格局;采取不同栽培技术和管理模式应对气候变化;采取综合配套技术提髙抵御灾害能力。为粮食作物安全生产和种植结构调整与布局提供科学依据。  相似文献   

19.
Rv0363c (fba), encoding Class II fructose-bisphosphate aldolase (FBA), is one of the potential drug targets identified in our laboratory based on minimal gene set concept. The wild-type enzyme overproduction in E. coli had been reported. However, the purification procedure was relatively tedious and the yield was low. In this study, five histidine codons were introduced into the 3′ end of the amplified fba fragments. The expressed C-terminal histidine-tagged Class II FBA was produced in E. coli BL21 (DE3) and easily purified using immobilized metal affinity chromatography. The purified his-tagged FBA was characterized. Its biochemical properties were compared to the non-his-tagged enzyme purified according to the previous report. Both FBAs have similar characteristics such as native/subunit molecular mass, kinetic parameters, and temperature/pH optima and stability. The C-terminal his-tagged FBA can be a surrogate for the native enzyme and used for screening of inhibitors of FBA. This developed expression system will pave the way for high-throughput screening and crystallization studies. Moreover, in this study, a colorimetric FBA assay has been simplified to facilitate the mass screening of inhibitor of FBA.  相似文献   

20.
Rv0363c (fba), encoding Class II fructose-bisphosphate aldolase (FBA), is one of the potential drug targets identified in our laboratory based on minimal gene set concept. The wild-type enzyme overproduction in E. coli had been reported. However, the purification procedure was relatively tedious and the yield was low. In this study, five histidine codons were introduced into the 3′ end of the amplified fba fragments. The expressed C-terminal histidine-tagged Class II FBA was produced in E. coli BL21 (DE3) and easily purified using immobilized metal affinity chromatography. The purified his-tagged FBA was characterized. Its biochemical properties were compared to the non-his-tagged enzyme purified according to the previous report. Both FBAs have similar characteristics such as native/subunit molecular mass, kinetic parameters, and temperature/pH optima and stability. The C-terminal his-tagged FBA can be a surrogate for the native enzyme and used for screening of inhibitors of FBA. This developed expression system will pave the way for high-throughput screening and crystallization studies. Moreover, in this study, a colorimetric FBA assay has been simplified to facilitate the mass screening of inhibitor of FBA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号