首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
Parent-of-origin-specific expression of the mouse insulin-like growth factor 2 (Igf2) gene and the closely linked H19 gene are regulated by an intervening 2 kb imprinting control region (ICR), which displays parentspecific differential DNA methylation [1] [2]. Four 21 bp repeats are embedded within the ICR and are conserved in the putative ICR of human and rat Igf2 and H19, suggesting that the repeats have a function [3] [4]. Here, we report that prominent DNA footprints were found in vivo on the unmethylated maternal ICR at all four 21 bp repeats, demonstrating the presence of protein binding. The methylated paternal ICR displayed no footprints. Significantly, the maternal-specific footprints were localized to putative binding sites for CTCF, a highly conserved zinc-finger DNA-binding protein with multiple roles in gene regulation including that of chromatin insulator function [5] [6]. These results strongly suggest that the maternal ICR functions as an insulator element in regulating mutually exclusive expression of Igf2 and H19 in cis.  相似文献   

4.
5.
Genomic imprinting at the H19/Igf2 locus is governed by a cis-acting Imprinting-Control Region (ICR), located 2 kb upstream of the H19 gene. This region possesses an insulator function which is activated on the unmethylated maternal allele through the binding of the CTCF factor. It has been previously reported that paternal transmission of the H19(SilK) deletion, which removes the 3' portion of H19 ICR, leads to the loss of H19 imprinting. Here we show that, in the liver, this reactivation of the paternal H19 gene is concomitant to a dramatic decrease in Igf2 mRNA levels. This deletion alters higher-order chromatin architecture, Igf2 promoter usage and tissue-specific expression. Therefore, when methylated, the 3' portion of the H19 ICR is a bi-functional regulatory element involved not only in H19 imprinting but also in 'formatting' the higher-order chromatin structure for proper tissue-specific expression of both H19 and Igf2 genes.  相似文献   

6.
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes - a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well-characterised imprinted Igf2-H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental-specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2-H19 domains.  相似文献   

7.
Imprinting of the linked and oppositely expressed mouse H19 and Igf2 genes requires a 2-kb differentially methylated domain (DMD) that is located 2 kb upstream of H19. This element is postulated to function as a methylation-sensitive insulator. Here we test whether an additional sequence 5' of H19 is required for H19 and Igf2 imprinting. Because repetitive elements have been suggested to be important for genomic imprinting, the requirement of a G-rich repetitive element that is located immediately 3' to the DMD was first tested in two targeted deletions: a 2.9-kb deletion (Delta D MD Delta G) that removes the DMD and G-rich repeat and a 1.3-kb deletion (Delta G) removing only the latter. There are also four 21-bp GC-rich repetitive elements within the DMD that bind the insulator-associated CTCF (CCCTC-binding factor) protein and are implicated in mediating methylation-sensitive insulator activity. As three of the four repeats of the 2-kb DMD were deleted in the initial 1.6-kb Delta DMD allele, we analyzed a 3.8-kb targeted allele (Delta 3.8kb-5'H19), which deletes the entire DMD, to test the function of the fourth repeat. Comparative analysis of the 5' deletion alleles reveals that (i) the G-rich repeat element is dispensable for imprinting, (ii) the Delta DMD and Delta DMD Delta G alleles exhibit slightly more methylation upon paternal transmission, (iii) removal of the 5' CTCF site does not further perturb H19 and Igf2 imprinting, suggesting that one CTCF-binding site is insufficient to generate insulator activity in vivo, (iv) the DMD sequence is required for full activation of H19 and Igf2, and (v) deletion of the DMD disrupts H19 and Igf2 expression in a tissue-specific manner.  相似文献   

8.
Parental genomes have reciprocal phenotypic effects during development in the mouse because they are programmed (imprinted) with germ line-specific epigenetic modifications. These epigenetic modifications are inherited after fertilisation and they determine whether the maternal or the paternal allele of an 'imprinted' gene is expressed. Four such imprinted genes have so far been identified; the paternal genes of Igf2, and Snrpn, and the maternal genes of Igf2r and H19 are preferentially expressed during development. Igf2 and H19 are closely linked on chromosome 7 and show remarkably similar temporal and spatial patterns of expression. A mechanistic, and possibly a functional link may exist in the reciprocal imprinting of H19 and Igf2. The paternal H19 gene is apparently repressed by DNA methylation in the promoter region. This modification is not inherited from sperm but introduced after fertilisation. The nature of the primary germ line imprint therefore remains to be determined.  相似文献   

9.
10.
11.
The mouse Igf2 and H19 genes lie 70-kb apart on chromosome 7 and are reciprocally imprinted. Two regulatory regions are important for their parental allele-specific expression: a differentially methylated region (DMR) upstream of H19 and a set of tissue-specific enhancers downstream of H19. The enhancers specifically activate Igf2 on the paternal chromosome and H19 on the maternal chromosome. The interactions between the enhancers and the genes are regulated by the DMR, which works as a selector by exerting dual functions: a methylated DMR on the paternal chromosome inactivates adjacent H19 and an unmethylated DMR on the maternal chromosome insulates Igf2 from the enhancers. These processes appear to involve methyl-CpG-binding proteins, histone deacetylases and the formation of chromatin insulator complexes. The Igf2/H19 region provides a unique model in which to study the roles of DNA methylation and chromatin structure in the regulation of chromosome domains.  相似文献   

12.
13.
The H19 gene encodes a 2.3-kb non-coding mRNA which is strongly expressed during embryogenesis. This gene belongs to an imprinted cluster, conserved on mouse chromosome 7 and human chromosome 11p15. H19 is maternally expressed and the neighbouring Igf2 gene is transcribed from the paternal allele. These two genes are co-expressed in endoderm- and mesoderm-derived tissues during embryonic development, which suggests a common mechanism of regulation. The regulatory elements (imprinted control region, CTCF insulation, different enhancer sequences, promoters of the two genes, matrix attachment regions) confer a differential chromatin architecture to the two parental alleles leading to reciprocal expression. The role of the H19 gene is unclear but different aspects have been proposed. H19 influences growth by way of a cis control on Igf2 expression. Although H19(-/-) mice are viable, a role for this gene during development has been suggested by viable H19(-/-) parthenogenetic mice. Finally it has been described as a putative tumour suppressor gene. H19 has been studied by numerous laboratories over the last fifteen years, nevertheless the function of this non-coding RNA remains to be elucidated.  相似文献   

14.
Reed MR  Huang CF  Riggs AD  Mann JR 《Genomics》2001,74(2):186-196
Imprinting of the mouse H19 and Igf2 genes is dependent on the presence of an intervening imprinting control region (ICR) situated 2 kb upstream of H19 and approximately 70 kb downstream of Igf2. Several recent studies have provided substantial evidence that the unmethylated maternal ICR acts as an insulator that prevents activation of Igf2 by a suite of enhancers downstream of the H19 gene. The methylated paternal ICR and H19 promoter have no activity, allowing sole activation of Igf2 expression. We have produced mice in which a duplication of the H19/Igf2 ICR produces, in each generation, two classes of methylation levels that correlated with two Igf2 imprinting phenotypes. One hypermethylated class also shows activation of the normally silent Igf2 gene, whereas the other hypomethylated class shows only slight activation of Igf2, in agreement with methylation's role in ICR function. This study describes a rare, possibly unique type of mutation that induces two distinct phenotypes in each generation.  相似文献   

15.
Igf2 (insulin‐like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene‐cluster that leads to parent‐specific expression, with current models including parental allele‐specific DNA methylation and chromatin modifications, DNA‐binding of insulator proteins (CTCFs) and three‐dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. ‘The enhancer competition model’, ‘the boundary model’ and ‘the chromatin‐loop model’ are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern.  相似文献   

16.
17.
In mammals, a subset of genes inherit gametic marks that establish parent of origin-dependent expression patterns in the soma ([1] and references therein). The currently most extensively studied examples of this phenomenon, termed genomic imprinting, are the physically linked Igf2 (insulin-like growth factor II) and H19 genes, which are expressed mono-allelically from opposite parental alleles [1] [2]. The repressed status of the maternal Igf2 allele is due to cis elements that prevent the H19 enhancers [3] from accessing the Igf2 promoters on the maternal chromosome [4] [5]. A differentially methylated domain (DMD) in the 5' flank of H19 is maintained paternally methylated and maternally unmethylated [6] [7]. We show here by gel-shift and chromatin immunopurification analyses that binding of the highly conserved multivalent factor CTCF ([8] [9] and references therein) to the H19 DMD is methylation-sensitive and parent of origin-dependent. Selectively mutating CTCF-contacting nucleotides, which were identified by methylation interference within the extended binding sites initially revealed by nuclease footprinting, abrogated the H19 DMD enhancer-blocking property. These observations suggest that molecular mechanisms of genomic imprinting may use an unusual ability of CTCF to interact with a diverse spectrum of variant target sites, some of which include CpGs that are responsible for methylation-sensitive CTCF binding in vitro and in vivo.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号