首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Daily Patterns under the Life Cycle of a Maize Crop   总被引:3,自引:0,他引:3  
Together with photosynthesis, transpiration and respiration, the daily uptake of NO3?, NH4+, H2PO4?, K+, Ca2+, Mg2+, SO42?, the root respiration, root volume increase and root excretions have been studied by daily measurements during the growth period of whole maize plants (Zea mays L. cv. INRA F7 × F2) raised until complete maturity on nutrient solution. The uptake patterns show a maximum absorption of NO3?, K+ and Ca2+ during the vegetative growth phase. The absorption of these ions declines during maturation while that of H2PO4? reaches a maximum. Root respiration and particularly the uptake of NO3? and K+ are well correlated with the rate of root growth. Root excretion is more notable in young plants than in the old. It represents less than 0.2% of the net assimilation of adult plants.  相似文献   

2.
Meager information is available on the specific effects of root volume (V) and N concentration in the water (CN) on uptake rates of water and N by apple trees, as related to fruit yield and tree growth. To investigate this relationship, Golden Delicious/Hashabi trees were grown for 5 years in containers of 200, 50 and 101. Trees in the 200–1 containers were irrigated with a nutrient solution containing 10.7±1.3, 7.1±1.5 or 2.5±1.0 mM NO3. Trees in the remaining two container-volume treatments were uniformly supplied with a solution of 7.1±1.5 mM NO3. Elevated CN had no effect on the rate of water uptake, but increased the rate of N absorption by the trees from 2.4 to 4.8 g N tree−1 day−1 during July. The stimulated N uptake rate stemmed from enhanced fluxes of N uptake by the roots. CN had a negligible effect on root weight and root permeability to NO3 and water. The elevated N uptake rate did not result in greater fruit yield and growth, or greater N content in tree organs, indicating considerable release of N from living and decaying roots to the growth medium. Reducing the container volume decreased yield, total dry matter production and N and water uptake rates, but increased root permeability to NO3 and water, and total soluble solids in fruits. The all-season average CN in the irrigation solution above which N concentration in the transpiration stream was lower than the inflowing CN was 4.2 mM NO3.  相似文献   

3.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

4.
Wang  Guoying  Li  Chunjian  Zhang  Fusuo 《Plant and Soil》2003,256(1):169-178
NH4 +-N can have inhibitory effects on plant growth. However, the mechanisms of these inhibitory effects are still poorly understood. In this study, effects of different N forms and a combination of ammonium + 6-benzylaminopurine (6-BA, a synthetic cytokinin) on growth, transpiration, uptake and flow of water and potassium in 88-days-old tobacco (Nicotiana tabacum L. K 326) plants were studied over a period of 12 days. Plants were supplied with equal amounts of N in different forms: NO3 , NH4NO3, NH4 + or NH4 ++6-BA (foliar spraying every 2 days after onset of the treatments). For determining flows and partitioning upper, middle and lower strata of three leaves each were analysed. During the 12 days study period, 50% replacement of NO3 -N by NH4 +-N (NH4NO3) did not change growth, transpiration, uptake and flow of water and K+ compared with the NO3 -N treatment. However, NH4 +-N as the sole N-source caused: (i) a substantial decrease in dry weight gain to 42% and 46% of the NO3 -N and NH4NO3 treatments, respectively; (ii) a marked reduction in transpiration rate, due to reduced stomatal conductance, illustrated by more negative leaf carbon-isotope discrimination (13C) compared with the NO3 treatment, especially in upper leaves; (iii) a strong reduction both in total water uptake, and in the rate of water uptake by roots, likely due to a decrease in root hydraulic conductivity; (iv) a marked reduction of K+ uptake to 10%. Under NH4 + nutrition the middle leaves accumulated 143%, and together with upper leaves 206% and the stem 227% of the K+ currently taken up, indicating massive mobilisation of K+ from lower leaves and even the roots. Phloem retranslocation of K+ from the shoot and cycling through the root contributed 67% to the xylem transport of K+, and this was 2.2 times more than concurrent uptake. Foliar 6-BA application could not suppress or reverse the inhibitory effects on growth, transpiration, uptake and flow of water and ions (K+) caused by NH4 +-N treatment, although positive effects by 6-BA application were observed, even when 6-BA (10–8 M) was supplied in nutrient solution daily with watering. Possible roles of cytokinin to regulate growth and development of NH4 +-fed plants are discussed.  相似文献   

5.
McLaughlin  M.J.  Lambrechts  R.M.  Smolders  E.  Smart  M.K. 《Plant and Soil》1998,202(2):217-222
Sulfate complexation of Cd in nutrient solution has been shown to have little impact on Cd uptake by plants. This study examined the effect of sulfate added to soil on Cd concentrations in soil solution and Cd uptake by Swiss chard (Beta vulgaris L. cv. Fordhook Giant). Swiss chard was grown in soil which was wetted with complete nutrient solution containing equivalent salt concentrations of NaNO3 or Na2SO4. Plant growth was reduced by increasing both NO3 and SO4 concentrations in soil solution, with growth reductions similar for both salts. The Cd concentration in soil solution increased P< 0.05) more consistently with increasing concentrations of SO4 compared to NO3 in soil solution. Solution speciation, calculated with GEOCHEM-PC, showed significant increases of Cd2+ activities with increasing salt rates. Shoot Cd content in 19-day-old Swiss chard plants was marginally but significantly P <0.05) increased with increasing SO4 concentration but no effect was observed with increasing NO3 concentration. These results are compared with earlier work on the marked effect of Cl- salinity on Cd availability in Swiss chard. Possible mechanisms explaining the smaller effect of SO4 compared to Cl on Cd availability are proposed.  相似文献   

6.
Some plant species can increase the mass flow of water from the soil to the root surface in response to the appearance of nitrate in the rhizosphere by increasing root hydraulic conductivity. Such behavior can be seen as a powerful strategy to facilitate the uptake of nitrate in the patchy and dynamically changing soil environment. Despite the significance of such behavior, little is known about the dynamics and mechanism of this phenomenon. Here we examine root hydraulic response of nitrate starved Zea mays (L.) plants after a sudden exposure to 5 mM NO3 solution. In all cases the treatment resulted in a significant increase in pressure-induced (pressure gradient ~ 0.2 MPa) flow across the root system by ~50% within 4 h. Changes in osmotic gradient across the root were approximately 0.016 MPa (or 8.5%) and thus the results could only be explained by a true change in root hydraulic conductance. Anoxia treatment significantly reduced the effect of nitrate on xylem root hydraulic conductivity indicating an important role for aquaporins in this process. Despite a 1 h delay in the hydraulic response to nitrate treatment, we did not detect any change in the expression of six ZmPIP1 and seven ZmPIP2 genes, strongly suggesting that NO3 ions regulate root hydraulics at the protein level. Treatments with sodium tungstate (nitrate reductase inhibitor) aimed at resolving the information pathway regulating root hydraulic properties resulted in unexpected findings. Although this treatment blocked nitrate reductase activity and eliminated the nitrate-induced hydraulic response, it also produced changes in gene expression and nitrate uptake levels, precluding us from suggesting that nitrate acts on root hydraulic properties via the products of nitrate reductase.  相似文献   

7.
The effect of pH on nitrate and ammonium uptake in the high‐affinity transport system and low‐affinity transport system ranges was compared in two conifers and one crop species. Many conifers grow on acidic soils, thus their preference for ammonium vs nitrate uptake can differ from that of crop plants, and the effect of pH on nitrogen (N) uptake may differ. Proton, ammonium and nitrate net fluxes were measured at seedling root tips and 5, 10, 20 and 30 mm from the tips using a non‐invasive microelectrode ion flux measurement system in solutions of 50 or 1500 µM NH4NO3 at pH 4 and 7. In Glycine max and Pinus contorta, efflux of protons was observed at pH 7 while pH 4 resulted in net proton uptake in some root regions. Pseudotsuga menziesii roots consistently showed proton efflux behind the root tip, and thus appear better adapted to maintain proton efflux in acid soils. P. menziesii's ability to maintain ammonium uptake at low pH may relate to its ability to maintain proton efflux. In all three species, net nitrate uptake was greatest at neutral pH. Net ammonium uptake in G. max and net nitrate uptake in P. menziesii were greatly reduced at pH 4, particularly at high N concentration, thus N concentration should be considered when determining optimum pH for N uptake. In P. menziesii and G. max, net N uptake was greater in 1500 than 50 µM NH4NO3 solution, but flux profiles of all ions varied among species.  相似文献   

8.
The importance of nutritional regulation of plant water flux   总被引:1,自引:0,他引:1  
Transpiration is generally considered a wasteful but unavoidable consequence of photosynthesis, occurring because water is lost when stomata open for CO2 uptake. Additionally, transpiration has been ascribed the functions of cooling leaves, driving root to shoot xylem transport and mass flow of nutrients through the soil to the rhizosphere. As a consequence of the link between nutrient mass flow and transpiration, nutrient availability, particularly that of NO3 , partially regulates plant water flux. Nutrient regulation of transpiration may function through the concerted regulation of: (1) root hydraulic conductance through control of aquaporins by NO3 , (2) shoot stomatal conductance (g s) through NO production, and (3) pH and phytohormone regulation of g s. These mechanisms result in biphasic responses of water flux to NO3 availability. The consequent trade-off between water and nutrient flux has important implications for understanding plant distributions, for production of water use-efficient crops and for understanding the consequences of global-change-linked CO2 suppression of transpiration for plant nutrient acquisition.  相似文献   

9.
Abstract. The effect of SeO3 and SeO4 on NO3 assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol. m? in the uptake solutions severely inhibited the induction of NO3 uptake and active nitrate reductases. Selenate, at 1.0 mol m?3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m?3 SeO4 for 24 h, subsequent NO3 uptake from SeO4-free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3 when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3. By contrast, SO4 partially alleviated the inhibitory effect of SeO4 even in seedlings pretreated with SeO4. Since uptake of NO3 by intact seedlings was also inhibited by SeO3, the percentage of the absorbed NO3 that was reduced was not affected. By contrast, SeO4, which affected NO3 uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3 and SeO4 inhibited the in vivo reduction of NO3 as well as the induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4; approximately a five to 10 times higher concentration of SeO4 than SeO3 was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3 and SeO4 on in vivo NO3 reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4. The inhibitory effects of Se salts on the induction of nitrite reductase were, however, completely alleviated by SO4. The results show that in barley seedlings SeO3 is more toxic than SeO4. The reduction of SeO4 to SeO3 may be a rate limiting step in causing Se toxicity.  相似文献   

10.
Soil flooding damages shoot systems by inhibiting root functioning. An example is the inhibition of water uptake brought about by decreased root hydraulic conductance. The extent of any resulting foliar dehydration this causes is limited by partial stomatal closure that begins within 4 h and is maintained for several days. Root to shoot signals that promote closure in flooded tomato plants have remained elusive but may include changes in solute delivery to the shoot by transpiration. Accordingly, we examined total osmolites and selected mineral ions in samples of xylem sap flowing at rates approximating whole plant transpiration. After 2.5 h flooding,delivery of total osmolites and of PO4 3-SO4 2-Ca2+K+NO3 and H+strongly decreased while Na+ remained excluded. Several hours later, deliveries of osmolites, PO4 3-, SO4 2-, Ca2+, and Na+ rose above control values, suggesting that, after approximately 10 h, root integrity became degraded and solute uptake de-regulated. Deliveries of NO3 remained below control values. Reducing or eliminating the supply of K+ to detached leaves to test the potential of decreased K+ delivery to close stomata proved negative. Decrease in H+ delivery was associated with sap alkalisation. However, raising the pH of buffer from 6.0 or 6.5 to 7.0 did not close stomata when tested in the presence of abscisic acid (ABA) at a concentration (10 mol m–3) typical of the transpiration stream of flooded plants. It is concluded that despite their rapidity and scale, negative messages in the form of increased pH and decreased solute delivery from roots to shoots are, themselves, unlikely initiators of stomatal closure in flooded tomato plants.  相似文献   

11.
Net rates of NO3? and K+ uptake were compared for oilseed rape (Brassica napus L. cv. Jet neuf), perennial ryegrass (Lolium perenne L. cv. S23), Italian ryegrass (Lolium multiflorum Lam. cv. Augusta) and wheat (Triticum aestivum L. cv. Fen-man) in flowing solution culture during a 4-day sequence of low-low-high-high natural irradiance. Concentrations of NO3? (10 μM) and K+ (2.5 μM) in solutions were maintained automatically and hourly variation in net uptake of these ions was measured. During the 2 days of low irradiance (<1 MJ m?2 day?1) the uptake rates of both ions by all species were low at <1 mmol NO3?, m?2 h?1 and <0.4 mmol K+ m?2 h?1. Uptake increased in each species during the first day of high irradiance (7.90 MJ m?2 day?1) to >4 mmol NO3? m?2 h?1 and >1.4 mmol K+ m?1 h?1. These higher rates were maintained throughout the following night. The lag-time between maximum irradiance and the onset of the highest acceleration in uptake was greater for NO3? (5–8 h) than for K+ (≤1 h) in rape, wheat and Italian ryegrass. Uptake of NO3?, by perennial ryegrass showed an almost constant acceleration for 18 h following maximum irradiance. In all species the measured maximum inflows (uptake rate per unit root length) of both ions were greater than theoretical maximum potential inflows to a non-competing infinite-sink root in soil, by factors of 7 and 36, respectively, for NO3? and K+, averaged over all species.  相似文献   

12.
Toxic Effect of Cadmium on Rice as Affected by Nitrogen Fertilizer Form   总被引:1,自引:0,他引:1  
A nutrient solution experiment was conducted to determine the influence of N forms on growth, oxidative stress, and Cd and N uptake in rice plants. The treatments were consisted of two Cd levels (0 and 1 μmol) and three N forms (NH4)2SO4, NH4NO3 and Ca(NO3)2. The results indicated that without Cd addition in the culture solution, the N forms had no significant effect on all measured parameters, including plant growth, photosynthetic traits, malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, and Cd and N concentration, while Cd addition in the medium resulted in significant differences in measured parameters among the three forms of N fertilizers. The least inhibition of growth was noted in (NH4)2SO4-fed plants, and the largest in Ca(NO3)2-fed plants, when plants were exposed to Cd stress. The highest photosynthetic rate and chlorophyll content was also recorded in (NH4)2SO4-fed plants. Addition of Cd caused a remarkable increase in SOD activity and MDA content in plants, and the extent of increase varied with N form, with (NH4)2SO4-fed plants being smallest. In comparison with the control plants, the N concentration in roots and shoots was not significantly affected in (NH4)2SO4-fed plants, but significant decrease in root N concentration was found for the NH4NO3 and Ca(NO3)2-fed plants under Cd stress. Moreover, the significant differences were also noted among the three N forms in both root and shoot Cd concentrations, with (NH4)2SO4-fed plants being the lowest. The results indicated that the toxic effect of Cd on rice varied with the form of N fertilizer.  相似文献   

13.
The uptake and transport of Ca2+ and HPO42? from roots of Lolium perenne L. was studied using variable N nutrition supplied to halves of a divided root system. Plants were grown for 4 weeks in solution containing 0.11 mM NO3?–N; then one-half of the root system was supplied with either 4.0 mM NO3?–N or 0.28 mM NH4+–N while the other half of the root system remained in low-N solution. Uptake and transport of Ca2+ increased and uptake of HPO42? declined in root halves supplied with high NO3?–N for 16 h. After supply of high NO3?–N or NH4+–N to half the root system for 6 days, the roots supplied with high-N exhibited significantly higher rates of uptake and percentage transport to shoots of both Ca2+ and HPO42?–. However, in neither the 16-h nor 6-day treatment did Ca2+ or HPO42? uptake of the root half supplied with low N differ significantly from the control (low N supplied to both halves of the root). Significantly higher N concentrations were found in low-N supplied roots (compared to the control) as a result of internal translocation of N from high-N supplied roots to low-N supplied roots. Although N concentration in the low-N supplied roots increased, uptake rates of Ca2+ or HPO42? did not change implying that external N concentration may be the important factor which influences or governs N mediated uptake responses. This would further suggest that the site of uptake regulation for Ca2+ and HPO42? exists on the outer plasma membrane which is in direct contact with the external solution. Transport of Ca2+ and HPO42? to the shoot was generally increased in low-N root halves after 6 days of high-N supply to the other half of the root. This implies that plant growth demand may be a major factor in regulating rates of Ca2+ and HPO42? transport from roots to the shoot. It also reinforces the hypothesis that uptake and transport of ions out of the root are separately controlled or regulated in the plant.  相似文献   

14.
The effects of K fertiliser (160 kg ha-1) applied with Cl- or SO4 2- as the accompanying anion on the K nutrition of kiwifruit (Actinidia deliciosa var. deliciosa) were assessed in a field experiment, using vines with varying degrees of K deficiency. Leaf K concentrations in spring were significantly higher for vines receiving KCl, compared to those receiving K2SO4. This effect did not interact significantly with the degree of K deficiency, and persisted for about 6 weeks. Subsequently there was no significant difference between the leaf K concentrations for the vines receiving KCl or K2SO4. Applying K as KCl increased the leaf Cl concentration, especially in spring, while applying K as K2SO4 had no significant effect on the leaf S concentration at that time. These results implied a greater requirement for organic acid anions for K+ uptake from K2SO4 than from KCl, and the importance of organic acid anions for K+ uptake from different sources of K fertiliser is discussed. This transient effect of the accompanying anion on leaf K status was associated with large effects on flowering, and fruit yields were about 28% higher for plants receiving KCl rather than K2SO4.The effects on growth and tissue nutrient composition of varying the concentrations of Cl-, NO3 -, SO4 2- and H2PO4 - around the roots of kiwifruit vines were examined in a solution culture experiment. For H2PO4 -, plant growth was very similar over a wide range of rates of addition. For the other anions, the range between deficiency and toxicity was clearly delineated. For Cl- and NO3 -, toxicity was associated with high tissue concentrations of Cl and N, respectively, and was consistent with competition for uptake between Cl- and NO3 -. However, for SO4 2-, toxicity was associated with only a small increase in the tissue S concentration relative to that associated with maximum growth, and appeared to result more from effects on uptake of other anions and cations rather than from direct effects of high tissue S concentrations.It is concluded that the sensitivity of kiwifruit to the anion accompanying K+ in fertiliser may be related to the unusually high requirement for Cl previously reported for this species.  相似文献   

15.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   

16.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

17.
The kinetics of ammonium and nitrate uptake by young rice plants   总被引:13,自引:0,他引:13  
Summary An important process which affects the fate of fertilizer nitrogen (N) applied to a rice crop is crop N uptake. This uptake rate is controlled by many factors including the N-ion species and its concentration. In this study the relation between N concentration at the root surface and N uptake was characterized using Michaelis-Menten kinetics. The equation considers two parameters, Vmax and Km, which are measures of the maximum rate of uptake and the affinity of the uptake sites for the nutrient, respectively. Uptake rates of intact rice plants growing in a continuously flowing nutrient solution system were fitted to the Michaelis-Menten model using a weighted regression analysis. For NH4−N the Km values for 4- and 9-week-old rice plants indicated a high affinity for the ammonium ions relative to concentrations reported for rice soils after fertilization. The Vmax values expressed on a unit-root-mass basis decreased with plant age, indicating a reduction in the average density of uptake sites on the root surface. The kinetics of NO3−N uptake was similar to that of NH4−N when NO3−N was the only N source. However, if NH4−N and NO3−N were present simultaneously in the solution the Vmax for the uptake of NO3−N was severely reduced, while the Km was affected very little. This inhibition appears to be noncompetitive. Fertilization of young rice plants leading to concentration of N at the root surface above approximately 900 μM will not increase crop uptake and may contribute to inefficient N recovery by the crop. The existence of NH4−N and NO3−N simultaneously at the root surface may also lead to inefficient N recovery because of reduced uptake of NO3−N.  相似文献   

18.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   

19.
Tadano T  Baker JH  Drake M 《Plant physiology》1969,44(11):1639-1644
The effect of addition of Ca salts on accumulation of K from 5 mN KCl or K2SO4 solutions was found to depend on whether Ca was added as Cl or SO4 salt. Chloride as well as K uptake was increased when Ca and Cl concentrations in culture solutions were increased. Pre-treatment of roots with CaCl2 stimulated subsequent K uptake from K2SO4 solutions as compared to pre-treatment with distilled water but pre-treatment with CaSO4 did not. The results indicate that addition of Ca salts to KCl or K2SO4 solutions increased anion uptake and the effect of the addition of the Ca salts on K uptake was in part the result of increased anion uptake and not entirely a direct effect of Ca.  相似文献   

20.
Nutrient uptake is generally thought to exhibit a simple seasonal pattern, but few studies have measured temporal variation of nutrient uptake capacity in mature trees. We measured net uptake capacity of K, NH+4, NO3, Mg and Ca across a range of solution concentrations by roots of mature loblolly pine at Calhoun Experimental Forest in October 2001, July 2001, and April 2002. Uptake capacity was generally lowest in July; rates in October were similar to those in April. Across a range of concentrations, antecedent nutrient solution concentrations affected the temporal patterns in uptake in July but not in October or April. In July, uptake of NH+4, Mg and Ca was positively correlated with concentration when roots were exposed to successively lower concentrations, but negatively correlated with concentration when exposed to successively higher concentrations. In contrast, uptake in October was constant across the range of concentrations, while uptake increased with concentration in April. As in studies of other species, we found greater uptake of NH+4 than NO3. Temporal patterns of uptake capacity are difficult to predict, and our results indicate that experimental conditions, such as experiment duration, antecedent root conditions and nutrient solution concentration, affect measured rates of nutrient uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号