首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelsolin is activated by Ca(2+) to sever actin filaments. Ca(2+) regulation is conferred on the N-terminal half by the C-terminal half. This paper seeks to understand how Ca(2+) regulates gelsolin by testing the "tail helix latch hypothesis," which is based on the structural data showing that gelsolin has a C-terminal tail helix that contacts the N-terminal half in the absence of Ca(2+). Ca(2+) activation of gelsolin at 37 degrees C occurs in three steps, with apparent K(d) for Ca(2+) of 0.1, 0.3, and 6.4 x 10(-6) m. Tail helix truncation decreases the apparent Ca(2+) requirement for severing to 10(-7) m and eliminates the conformational change observed at 10(-6) m Ca(2+). The large decrease in Ca(2+) requirement for severing is not due to a change in Ca(2+) binding nor to Ca(2+)-independent activation of the C-terminal half per se. Thus, the tail helix latch is primarily responsible for transmitting micromolar Ca(2+) information from the gelsolin C-terminal half to the N-terminal half. Occupation of submicromolar Ca(2+)-binding sites primes gelsolin for severing, but gelsolin cannot sever because the tail latch is still engaged. Unlatching the tail helix by 10(-6) m Ca(2+) releases the final constraint to initiate the severing cascade.  相似文献   

2.
Gelsolin is an abundant calcium dependent actin filament severing and capping protein. In the absence of calcium the molecule is compact but in the presence of calcium, as its six similar domains alter their relative position, a generally more open configuration is adopted to reveal the three actin binding sites. It is generally held that a 'helical-latch' at the C-terminus of gelsolin's domain 6 (G6), binds domain 2 (G2) to keep gelsolin in the calcium-free compact state, and that the crutial calcium binding site(s) reside in the C-terminal half of gelsolin perhaps involving the C-terminal helix itself has to be bound to release this latch. Here we provide evidence for a calcium dependent conformational change within G2 (Kd = approximately 15 micro m). We also report a calcium dependent binding site for the C-terminus (G4-6) within G2 and delimit this further to a specific region formed by residues 203-225 and 159-193. It is known that the activation of gelsolin involves multiple calcium binding events (around 6) the first of which (in G6) may release the latch. We propose that the calcium-dependent conformational change in G2 may be a subsequent step that is necessary for the dissociation of G2 from G4-6, and that this movement occurs in sympathy with calcium induced conformational changes within G6 by the physical coupling of the two calcium binding sites within G2 and G6. Additional calcium binding in other domains then result in the complete opening and activation of the gelsolin molecule.  相似文献   

3.
We identified a number of upregulated genes by differential screening of interleukin-9-stimulated T-helper lymphocytes. Interestingly, two of these messengers encode proteins that are similar to proteins of the gelsolin family. The first displays a typical structure of six homologous domains and shows a high level of identity (90%) with bovine adseverin (or scinderin) and may therefore be considered the murine adseverin homolog. The second encodes a protein with only five segments. Sequence comparison shows that most of the fifth segment and a short amino-terminal part of the sixth segment (amino acids 528 to 628 of adseverin) are missing, and thus, this form may represent an alternatively spliced product derived from the same gene. The corresponding protein is called mouse adseverin (D5). We expressed both proteins in Escherichia coli and show that mouse adseverin displays the typical characteristics of all members of the gelsolin family with respect to actin binding (capping, severing, and nucleation) and its regulation by Ca2+. In contrast, mouse adseverin (D5) fails to nucleate actin polymerization, although like mouse adseverin and gelsolin, it severs and caps actin filaments in a Ca2+-dependent manner. Adseverin is present in all of the tissues and most of the cell lines tested, although at low concentrations. Mouse adseverin (D5) was found only in blood cells and in cell lines derived from T-helper lymphocytes and mast cells, where it is weakly expressed. In a gel filtration experiment, we demonstrated that mouse adseverin forms a 1:2 complex with G actin which is stable only in the presence of Ca2+, while no stable complex was observed for mouse adseverin (D5).  相似文献   

4.
Calcium sensitive actin severing protein, adseverin, with Mr 74,000, was cleaved into two fragments of Mr 42,000 and Mr 39,000 by V8 protease and trypsin, and both fragments were purified by high performance (pressure) liquid chromatography ion-exchange column chromatography. To understand how adseverin can sever actin filaments, we identified the actin-binding domains. The NH2 termini of native adseverin and the Mr 42,000 fragment were confirmed to be blocked by amino acid sequencing. Twelve amino acids of the Mr 39,000 fragment were sequenced from the NH2 terminus; the sequence of this part had a homology to the hinge region between segments 3 and 4 of gelsolin and villin. Thus, the Mr 42,000 fragment is the NH2-terminal half (N42), and the Mr 39,000 fragment is the COOH-terminal half (C39). Each fragment was examined for actin-severing, -nucleating, -capping, and phospholipid binding activities with and without calcium. N42 contained a calcium-dependent actin-severing activity regulated by phospholipid. C39 bound to G-actin in a calcium-dependent manner, but had no severing activity. The sequence homology and similar functional domain structure suggest a common structural basis for the calcium- and phospholipid-regulated actin-severing properties shared by adseverin, gelsolin, and villin.  相似文献   

5.
Gelsolin participates in the reorganization of the actin cytoskeleton that is required during such phenomena as cell movement, cytokinesis, and apoptosis. It consists of six structurally similar domains, G1-G6, which are arranged at resting intracellular levels of calcium ion so as to obscure the three actin-binding surfaces. Elevation of Ca(2+) concentrations releases latches within the constrained structure and produces large shifts in the relative positioning of the domains, permitting gelsolin to bind to and sever actin filaments. How Ca(2+) is able to activate gelsolin has been a major question concerning the function of this protein. We present the improved structure of the C-terminal half of gelsolin bound to monomeric actin at 3.0 A resolution. Two classes of Ca(2+)-binding site are evident on gelsolin: type 1 sites share coordination of Ca(2+) with actin, while type 2 sites are wholly contained within gelsolin. This structure of the complex reveals the locations of two novel metal ion-binding sites in domains G5 and G6, respectively. We identify both as type 2 sites. The absolute conservation of the type 2 calcium-ligating residues across the six domains of gelsolin suggests that this site exists in each of the domains. In total, gelsolin has the potential to bind eight calcium ions, two type 1 and six type 2. The function of the type 2 sites is to facilitate structural rearrangements within gelsolin as part of the activation and actin-binding and severing processes. We propose the novel type 2 site in G6 to be the critical site that initiates overall activation of gelsolin by releasing the tail latch that locks calcium-free gelsolin in a conformation unable to bind actin.  相似文献   

6.
Structural analysis of gelsolin domains 4-6 demonstrates that the two highest-affinity calcium ions that activate the molecule are in domains 5 and 6, one in each. An additional calcium site in domain 4 depends on subsequent actin binding and is seen only in the complex. The uncomplexed structure is primed to bind actin. Since the disposition of the three domains is similar in different crystal environments, either free or in complex with actin, the conformation in calcium is intrinsic to active gelsolin itself. Thus the actin-free structure shows that the structure with an actin monomer is a good model for an actin filament cap. The last 13 residues of domain 6 have been proposed to be a calcium-activated latch that, in the inhibited form only, links two halves of gelsolin. Comparison with the active structure shows that loosening of the latch contributes but is not central to activation. Calcium binding in domain 6 invokes a cascade of swapped ion-pairs. A basic residue swaps acidic binding partners to stabilise a straightened form of a helix that is kinked in inhibited gelsolin. The other end of the helix is connected by a loop to an edge beta-strand. In active gelsolin, an acidic residue in this helix breaks with its loop partner to form a new intrahelical ion-pairing, resulting in the breakage of the continuous sheet between domains 4 and 6, which is central to the inhibited conformation. A structural alignment of domain sequences provides a rationale to understand why the two calcium sites found here have the highest affinity amongst the five different candidate sites found in other gelsolin structures.  相似文献   

7.
The molecular basis of the "tail helix latch" hypothesis in the gelsolin activation process has been studied by using the steered molecular dynamics simulations. In the present nanosecond scale simulations, the tail helix of gelsolin was pulled away from the S2 binding surface, and the required forces were calculated, from which the properties of binding between the tail helix and S2 domain and their dynamic unbinding processes were obtained. The force profile provides a detailed rupture mechanism that includes six major unbinding steps. In particular, the hydrogen bonds formed between Arg-207 and Asp-744 and between Arg-221 and Leu-753 are of the most important interaction pairs. The two hydrogen bond "clamps" stabilize the complex. The subsequent simulation on Arg-207-Ala (R207A) mutation of gelsolin indicated that this mutation facilitates the unbinding of the tail helix and that the contribution of the hydrogen bond between Arg-207 and Asp-744 to the binding is more than 50%, which offers a new clue for further mutagenesis study on the activation mechanism of gelsolin. Surrounding water molecules enhance the stability of the tail helix and facilitate the rupture process. Additionally, temperature also has a significant effect on the conformation of the arginine and arginine-related interactions, which revealed the molecular basis of the temperature dependence in gelsolin activation.  相似文献   

8.
A family of homologous actin-binding proteins sever and cap actin filaments and accelerate actin filament assembly. The functions of two of these proteins, villin and gelsolin, and of their proteolytically derived actin binding domains were compared directly by measuring their effects, under various ionic conditions, on the rates and extents of polymerization of pyrene-labeled actin. In 1 mM Ca2+ and 150 mM KCl, villin and gelsolin have similar severing and polymerization-accelerating properties. Decreasing [Ca2+] to 25 microM greatly reduces severing by villin but not gelsolin. Decreasing [KCl] from 150 to 10 mM at 25 microM Ca2+ increases severing by villin, but not gelsolin, over 10-fold. The C-terminal half domains of both proteins have Ca2+-sensitive actin monomer-binding properties, but neither severs filaments nor accelerates polymerization. The N-terminal halves of villin and gelsolin contain all the filament-severing activity of the intact proteins. Severing by gelsolin's N-terminal half is Ca2+-independent, but that of villin has the same Ca2+ requirement as intact villin. The difference in Ca2+ sensitivity extends to 14-kDa N-terminal fragments which bind actin monomers and filament ends, requiring Ca2+ in the case of villin but not gelsolin. Severing of filaments by villin and its N-terminal half is shown to be inhibited by phosphatidylinositol 4,5-bisphosphate, as shown previously for gelsolin (Janmey, P.A., and Stossel, T.P. (1987) Nature 325, 362-364). The functional similarities of villin and gelsolin correlate with known structural features, and the greater functional dependence of villin on Ca2+ compared to gelsolin is traced to differences in their N-terminal domains.  相似文献   

9.
CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84-91 (severing domain) and 124-137 (WH2-containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG-sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG-sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1-S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2-S3 complex by an extended arm consisting of amino acids 118-137. Modeling with F-actin predicts that the length of this WH2-containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG-sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer-binding sites, and that the length of the WH2-containing segment is a critical functional determinant for severing.  相似文献   

10.
Various concentrations of gelsolin (25-100 nM) were added to 2 microM polymerized actin. The concentrations of free calcium were adjusted to 0.05-1.5 microM by EGTA/Ca2+ buffer. Following addition of gelsolin actin depolymerization was observed that was caused by dissociation of actin subunits from the pointed ends of treadmilling actin filaments and inhibition by gelsolin of polymerization at barbed ends. The time course of depolymerization revealed an initial lag phase that was followed by slow decrease of the concentration of polymeric actin to reach the final steady state polymer and monomer concentration. The initial lag phase was pronounced at low free calcium and low gelsolin concentrations. On the basis of quantitative analysis the kinetics of depolymerization could be interpreted as capping, i.e. binding of gelsolin to the barbed ends of actin filaments and subsequent inhibition of polymerization, rather than severing. The main argument for this conclusion was that even gelsolin concentrations (100 nM) that exceed the concentration of filament ends ( approximately 2 nM), cause the filaments to depolymerize at a rate that is similar to the rate of depolymerization of the concentration of pointed ends existing before addition of gelsolin. The rate of capping is directly proportional to the free calcium concentration. These experiments demonstrate that at micromolar and submicromolar free calcium concentrations gelsolin acts as a calcium-regulated capping protein but not as an actin filament severing protein, and that the calcium binding sites of gelsolin which regulate the various functions of gelsolin (capping, severing and monomer binding), differ in their calcium affinity.  相似文献   

11.
Adseverin (74-kDa protein, scinderin) is a calcium- and phospholipid-modulated actin-binding protein that promotes actin polymerization, severs actin filaments, and caps the barbed end of the actin filament, with its NH2-terminal half retaining these properties (Sakurai, T., Kurokawa, H., and Nonomura, Y. (1991) J. Biol. Chem. 266, 4581-4585). Further proteolysis of this NH2-terminal half generated five fragments, and two of them (Mr 15,000 and 31,000) showed Ca(2+)-dependent binding to monomeric actin. The Mr 31,000 fragment especially caused actin filament fragmentation, although its severing activity was also inhibited by several acidic phospholipids as was found in adseverin and its NH2-terminal half. Amino acid sequencing demonstrated that the two fragments' NH2 terminus were blocked in the same manner as the NH2 terminus of adseverin, and thus these two fragments are possibly located at the NH2-terminal of the adseverin molecule. This would then indicate that NH2-terminal fragments had a Ca(2+)-sensitive actin-binding function that relates to actin severing. The other two fragments' NH2-terminal sequencing showed a similar homology to the amino acid sequences of gelsolin and villin. Based on these observations, we propose that adseverin has a functional domain structure similar to that of the gelsolin and villin core.  相似文献   

12.
Khurana S  George SP 《FEBS letters》2008,582(14):2128-2139
Villin is a tissue-specific actin modifying protein that is associated with actin filaments in the microvilli and terminal web of epithelial cells. It belongs to a large family of actin-binding proteins which includes actin-capping, -nucleating and/or -severing proteins such as gelsolin, severin, fragmin, adseverin/scinderin and actin crosslinking proteins such as dematin and supervillin. Studies done in epithelial cell lines and villin knock-out mice have demonstrated the function of villin in regulating actin dynamics, cell morphology, epithelial-to-mesenchymal transition, cell migration and cell survival. In addition, the ligand-binding properties of villin (F-actin, G-actin, calcium, phospholipids and phospholipase C-gamma1) are mechanistically important for the crosstalk between signaling pathways and actin reorganization in epithelial cells.  相似文献   

13.
Microinjection of gelsolin into living cells   总被引:11,自引:18,他引:11  
Gelsolins are actin-binding proteins that cap, nucleate, and sever actin filaments. Microinjection of cytoplasmic or plasma gelsolin into living fibroblasts and macrophages did not affect the shape, actin distribution, deformability, or ruffling activity of the cells. Gelsolin requires calcium for activity, but the NH2-terminal half is active without calcium. Microinjection of this proteolytic fragment had marked effects: the cells rounded up, stopped ruffling, became soft, and stress fibers disappeared. These changes are similar to those seen with cytochalasin, which also caps barbed ends of actin filaments. Attempts to raise the cytoplasmic calcium concentration and thereby activate the injected gelsolin were unsuccessful, but the increases in calcium concentration were minimal or transient and may not have been sufficient. Our interpretation of these results is that at the low calcium concentrations normally found in cells, gelsolin does not express the activities observed in vitro at higher calcium concentrations. We presume that gelsolin may be active at certain times or places if the calcium concentration is elevated to a sufficient level, but we cannot exclude the existence of another molecule that inhibits gelsolin. Microinjection of a 1:1 gelsolin/actin complex had no effect on the cells. This complex is stable in the absence of calcium and has capping activity but no severing and less nucleation activity as compared with either gelsolin in calcium or the NH2-terminal fragment. The NH2-terminal fragment-actin complex also has capping and nucleating activity but no severing activity. On microinjection it had the same effects as the fragment alone. The basis for the difference between the two complexes is unknown. The native molecular weight of rabbit plasma gelsolin is 82,500, and the extinction coefficient at 280 nm is 1.68 cm2/mg. A new simple procedure for purification of plasma gelsolin is described.  相似文献   

14.
Gelsolin is an actin filament-severing and -capping protein that has profound effects on actin filament organization and assembly. It is activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We have previously shown that PPI inhibit actin filament severing by the amino-terminal half of gelsolin and hypothesized that this is mediated through inhibition of actin filament side binding (by domains II-III of gelsolin), a requisite first step in severing. In this paper, we report that the subsequent step in severing, which is mediated by an actin monomer binding site located in domain I of gelsolin, is also regulated by PPI. We used deletional mutagenesis and a synthetic peptide to locate the sequence required for high affinity PPI binding in domain I. Our results show that the PPI-binding sequence has a basic charge distribution that is also present in the PPI-regulated actin filament side binding domain, and the two gelsolin PPI-binding sites have similar PPI-binding affinities. In addition, a similar motif is present in several other PPI-binding proteins, including a highly conserved region in the phospholipase C family. We propose that the sequences identified in gelsolin may represent a consensus for PPI binding in a variety of proteins.  相似文献   

15.
Dynamic behavior of actin filaments in cells is the basis of many different cellular activities. Remodeling of the actin filament network involves polymerization and depolymerization of the filaments. Proteins that regulate these behaviors include proteins that sever and/or cap actin filaments. This report presents direct observation of severing of fluorescently-labeled actin filaments. Coverslips coated with gelsolin, a multi-domain, calcium-dependent capping and severing protein, bound rhodamine-phalloidin-saturated filaments along their length in the presence of EGTA. Upon addition of calcium, attached filaments bent as they broke. Actophorin, a low molecular weight, monomer sequestering, calcium-independent severing protein did not sever phalloidin-saturated filaments. Both gCap 39, a gelsolin-like, calcium-dependent capping protein that does not sever filaments, and CapZ, a heterodimeric, non-calcium-dependent capping protein, bound the filaments by one end to the coverslip. Visualization of individual filaments also revealed severing activity present in mixtures of actin-binding proteins isolated by filamentous actin affinity chromatography from early Drosophila embryos. This activity was different from either gelsolin or actophorin because it was not inhibited by phalloidin, but was calcium independent. The results of these studies provide new information about the molecular mechanisms of severing and capping by well-characterized proteins as well as definition of a novel type of severing activity.  相似文献   

16.
17.
The regulation of adherens junction formation in cells of mesenchymal lineage is of critical importance in tumorigenesis but is poorly characterized. As actin filaments are crucial components of adherens junction assembly, we studied the role of gelsolin, a calcium-dependent, actin severing protein, in the formation of N-cadherin-mediated intercellular adhesions. With a homotypic, donor-acceptor cell model and plates or beads coated with recombinant N-cadherin-Fc chimeric protein, we found that gelsolin spatially co-localizes to, and is transiently associated with, cadherin adhesion complexes. Fibroblasts from gelsolin-null mice exhibited marked reductions in kinetics and strengthening of N-cadherin-dependent junctions when compared with wild-type cells. Experiments with lanthanum chloride (250 microm) showed that adhesion strength was dependent on entry of calcium ions subsequent to N-cadherin ligation. Cadherin-associated gelsolin severing activity was required for localized actin assembly as determined by rhodamine actin monomer incorporation onto actin barbed ends at intercellular adhesion sites. Scanning electron microscopy showed that gelsolin was an important determinant of actin filament architecture of adherens junctions at nascent N-cadherin-mediated contacts. These data indicate that increased actin barbed end generation by the severing activity of gelsolin associated with N-cadherin regulates intercellular adhesion strength.  相似文献   

18.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

19.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

20.
B Pope  J Gooch  H Hinssen  A G Weeds 《FEBS letters》1989,259(1):185-188
Gelsolin is a calcium-dependent actin severing and capping protein. Calcium 'opens' the molecule to make actin binding sites accessible, but removal of calcium from the medium does not necessarily fully reverse this process. The calcium sensitivity of actin monomer binding and actin filament severing is here shown to vary considerably with the source of gelsolin and conditions of preparation. Plasma gelsolin undergoes irreversible loss of calcium sensitivity when prepared in the presence of calcium ions. This is not due solely to effects of bound calcium, because purified human plasma gelsolin expressed in E. coli and stored in calcium shows no comparable loss of calcium sensitivity when prepared or stored in calcium. These results suggest the presence of factors in plasma which, in the presence of calcium, promote an irreversible structural change in gelsolin resulting in permanent loss of calcium sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号