首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mitogenic stimulation leads to activation of G(1) cyclin-dependent kinases (CDKs), which phosphorylate pocket proteins and trigger progression through the G(0)/G(1) and G(1)/S transitions of the cell cycle. However, the individual role of G(1) cyclin-CDK complexes in the coordinated regulation of pocket proteins and their interaction with E2F family members is not fully understood. Here we report that individually or in concert cyclin D1-CDK and cyclin E-CDK complexes induce distinct and coordinated phosphorylation of endogenous pocket proteins, which also has distinct consequences in the regulation of pocket protein interactions with E2F4 and the expression of p107 and E2F1, both E2F-regulated genes. The up-regulation of these two proteins and the release of p130 and pRB from E2F4 complexes allows formation of E2F1 complexes not only with pRB but also with p130 and p107 as well as the formation of p107-E2F4 complexes. The formation of these complexes occurs in the presence of active cyclin D1-CDK and cyclin E-CDK complexes, indicating that whereas phosphorylation plays a role in the abrogation of certain pocket protein/E2F interactions, these same activities induce the formation of other complexes in the context of a cell expressing endogenous levels of pocket and E2F proteins. Of note, phosphorylated p130 "form 3," which does not interact with E2F4, readily interacts with E2F1. Our data also demonstrate that ectopic overexpression of either cyclin is sufficient to induce mitogen-independent growth in human T98G and Rat-1 cells, although the effects of cyclin D1 require downstream activation of cyclin E-CDK2 activity. Interestingly, in T98G cells, cyclin D1 induces cell cycle progression more potently than cyclin E. This suggests that cyclin D1 activates pathways independently of cyclin E that ensure timely progression through the cell cycle.  相似文献   

2.
N Dyson  P Guida  K Münger    E Harlow 《Journal of virology》1992,66(12):6893-6902
Studies of adenovirus E1A oncoprotein mutants suggest that the association of E1A with the retinoblastoma protein (pRB) is necessary for E1A-mediated transformation. Mutational analysis of E1A indicates that two regions of pRB are required for E1A to form stable complexes with the retinoblastoma protein. In addition to pRB binding, these regions are necessary for E1A association with several other cellular proteins, including p130, p107, cyclin A, and p33cdk2. Here we show that short synthetic peptides containing the pRB-binding sequences of E1A are sufficient for interaction with p107, cyclin A, and p130. The E7 protein of human papillomavirus type 16 contains an element that binds to pRB and appears to be functionally homologous to the E1A sequences. Peptides containing this region of the E7 protein were able to interact with p107, cyclin A, and p130 in addition to pRB. These findings suggest that the common mechanism of transformation used by these viral oncogenes involves their association with a set of polypeptides.  相似文献   

3.
4.
p107 and p130: versatile proteins with interesting pockets   总被引:23,自引:0,他引:23  
  相似文献   

5.
6.
The activity of the retinoblastoma protein pRB is regulated by phosphorylation that is mediated by G(1) cyclin-associated cyclin-dependent kinases (CDKs). Since the pRB-related pocket proteins p107 and p130 share general structures and biological functions with pRB, their activity is also considered to be regulated by phosphorylation. In this work, we generated phosphorylation-resistant p107 and p130 molecules by replacing potential cyclin-CDK phosphorylation sites with non-phosphorylatable alanine residues. These phosphorylation-resistant mutants retained the ability to bind E2F and cyclin. Upon introduction into p16(INK4a)-deficient U2-OS osteosarcoma cells, in which cyclin D-CDK4/6 is dysregulated, the phosphorylation-resistant mutants, but not wild-type p107 or p130, were capable of inhibiting cell proliferation. Furthermore, when ectopically expressed in pRB-deficient SAOS-2 osteosarcoma cells, the wild-type as well as the phosphorylation-resistant pRB family proteins were capable of inducing large flat cells. The flat cell-inducing activity of the wild-type proteins, but not that of the phosphorylation-resistant mutants, was abolished by coexpressing cyclin E. Our results indicate that the elevated cyclin D- or cyclin E-associated kinase leads to systemic inactivation of the pRB family proteins and suggest that dysregulation of the pRB kinase provokes an aberrant cell cycle in a broader range of cell types than those induced by genetic inactivation of the RB gene.  相似文献   

7.
The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells.  相似文献   

8.
9.
10.
Cells expressing human papillomavirus type 16 (HPV-16) E7, similar to those which express HPV-16 E6, are resistant to a p53-mediated G1 growth arrest. We examined the p53-mediated DNA damage response pathway in E7-expressing cells to determine the mechanism by which E7-containing cells continue to cycle. In response to DNA damage, no dramatic difference was detected in G1- or S-phase cyclin or cyclin-dependent kinase (Cdk) levels when E7-expressing cells were compared to the parental cell line, RKO. Furthermore, Cdk2 kinase activity was inhibited in both RKO cells and E7-expressing cells, while Cdk2 remained active in E6-expressing cells. However, the steady-state levels of pRB and p107 protein were substantially lower in E7-expressing cells than in the parental RKO cells or E6-expressing cells. There was no reduction in pRB mRNA levels, but the half-life of pRB in E7-expressing cells was markedly shorter. Infection of primary human foreskin keratinocytes with recombinant retroviruses expressing HPV-16 E7 resulted in a decrease in pRB protein levels, indicating this phenomenon is a consequence of E7 expression, not of immortalization or transformation. These data strongly suggest E7 interferes with the stability of pRB and p107 protein. We propose that the removal of these components of the p53-mediated G1 growth arrest pathway in E7-expressing cells contributes to the ability of E7 to overcome a p53-mediated G1 growth arrest.  相似文献   

11.
12.
13.
14.
Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.  相似文献   

15.
The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes.  相似文献   

16.
The retinoblastoma (pRB) family of proteins includes three proteins known to suppress growth of mammalian cells. Previously we had found that growth suppression by two of these proteins, p107 and p130, could result from the inhibition of associated cyclin-dependent kinases (cdks). One important unresolved issue, however, is the mechanism through which inhibition occurs. Here we present in vivo and in vitro evidence to suggest that p107 is a bona fide inhibitor of both cyclin A-cdk2 and cyclin E-cdk2 that exhibits an inhibitory constant (Ki) comparable to that of the cdk inhibitor p21/WAF1. In contrast, pRB is unable to inhibit cdks. Further reminiscent of p21, a second cyclin-binding site was mapped to the amino-terminal portions of p107 and p130. This amino-terminal domain is capable of inhibiting cyclin-cdk2 complexes, although it is not a potent substrate for these kinases. In contrast, a carboxy-terminal fragment of p107 that contains the previously identified cyclin-binding domain serves as an excellent kinase substrate although it is unable to inhibit either kinase. Clustered point mutations suggest that the amino-terminal domain is functionally important for cyclin binding and growth suppression. Moreover, peptides spanning the cyclin-binding region are capable of interfering with p107 binding to cyclin-cdk2 complexes and kinase inhibition. Our ability to distinguish between p107 and p130 as inhibitors rather than simple substrates suggests that these proteins may represent true inhibitors of cdks.  相似文献   

17.
18.
The phosphorylation status of the pRB family of growth suppressor proteins is regulated in a cell cycle entry-, progression-, and exit-dependent manner in normal cells. We have shown previously that p130, a member of this family, exhibits patterns of phosphorylated forms associated with various cell growth and differentiation stages. However, human 293 cells, which are transformed cells that express the adenoviral oncoproteins E1A and E1B, exhibit an abnormal pattern of p130 phosphorylated forms. Here we report that, unlike pRB, the phosphorylation status of both p130 and p107 is not modulated during the cell cycle in 293 cells as it is in other cells. Conditional overexpression of individual G(1)/S cyclins in 293 cells does not alter the phosphorylation status of p130, suggesting that the expression of E1A and/or E1B blocks hyperphosphorylation of p130. In agreement with these observations, transient cotransfection of vectors expressing E1A 12S, but not E1B, in combination with pocket proteins into U-2 OS cells blocks hyperphosphorylation of both p130 and p107. However, the phosphorylation status of pRB is not altered by cotransfection of E1A 12S vectors. Moreover, MC3T3-E1 preosteoblasts stably expressing E1A 12S also exhibit a block in hyperphosphorylation of endogenous p130 and p107. Direct binding of E1A to p130 and p107 is not required for the phosphorylation block since E1A 12S mutants defective in binding to the pRB family also block hyperphosphorylation of p130 and p107. Our data reported here identify a novel function of E1A, which affects p130 and p107 but does not affect pRB. Since E1A does not bind the hyperphosphorylated forms of p130, this function of E1A might prevent the existence of "free" hyperphosphorylated p130, which could act as a CDK inhibitor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号