首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na,K-ATPase (sodium pump) plays a central role in the physiology of arthropod photoreceptors as it re-establishes gradients for Na+ and K+ after light stimulation. We have mapped the distribution of the Na,K-ATPase in the photoreceptors of the blowfly (Calliphora erythrocephala) by immunofluorescent and immunogold cytochemistry, and demonstrate that the distribution pattern is more complex than previously presumed. High levels of sodium pumps have been detected consistently in all photoreceptors R1-8 on the nonreceptive surface, but no sodium pumps are found on the microvillar rhabdomere. Within the nonreceptive surface of the cells R1-6, however, the sodium pumps are confined to sites juxtaposed to neighboring photoreceptor or glial cells; no sodium pumps have been detected on the parts of the nonreceptive surface exposed to the intra-ommatidial space. In R7 and R8, the sodium pumps are found over the entire nonreceptive surface. The cytoskeletal protein spectrin colocalizes with the sodium pumps suggesting that linkage of the pump molecules to the spectrin-based submembrane cytoskeleton contributes to the maintenance of the complex pattern of pump distribution.  相似文献   

2.
Drosophila melanogaster photoreceptors are highly polarized cells and their plasma membrane is organized into distinct domains. Zonula adherens junctions separate a smooth peripheral surface, the equivalent of the basolateral surface in other epithelial cells, from the central surface (approximately equal to apical surface). The latter consists of the microvillar rhabdomere and the juxtarhabdomeric domain, a nonmicrovillar area between the rhabdomere and the zonulae adherens. The distribution of Na/K-ATPase over these domains was examined by immunocytochemical, developmental, and genetic approaches. Immunofluorescence and immunogold labeling of adult compound eyes reveal that the distribution of Na/K-ATPase is concentrated at the peripheral surface in the photoreceptors R1-R6, but extends over the juxtarhabdomeric domain to the rhabdomere in the photoreceptors R7/R8. Developmental analysis demonstrates further that Na/K-ATPase is localized over the entire plasma membrane in all photoreceptors in early pupal eyes. Redistribution of Na/K-ATPase in R1-R6 occurs at about 78% of pupal life, coinciding with the onset of Rh1-rhodopsin expression on the central surface of these cells. Despite the essential role of Rh1 in structural development and intracellular trafficking, Rh1 mutations do not affect the distribution of Na/K-ATPase. These results suggest that Na/K-ATPase and rhodopsin are involved in distinct intracellular localization mechanisms, which are maintained independent of each other.  相似文献   

3.
This study explored whether Dictyostelium discoideum can be used to express the avian Na,K-ATPase, a heterodimeric membrane protein. Dictyostelium was able to express mRNAs encoding the avian Na,K-ATPase subunits. However, Dictyostelium expressed avian Na,K-ATPase protein when only when a Dictyostelium consensus ribosomal binding sequence, AAAATAAA, was inserted in front of the open reading frames of the α1- and β1-subunit cDNAs and the first eight codons following the start-translation codons were changed to Dictyostelium preferred codons. These modified mRNAs appeared to be much less stable than the forms that were not readily translated. Dictyostelium could express the avian β-subunit alone but only expressed the α1-subunit when the β1-subunit was co-expressed. Subunit assembly occurred in cells expressing both α1- and β1-subunits. The bulk of the exogenously expressed sodium pump subunits remained in an intracellular compartment, presumed to be the endoplasmic reticulum. Dictyostelium exported little or no Na,K-ATPase or free β-subunit to the plasma membrane. Received: 7 July 1998/Revised: 8 October 1998  相似文献   

4.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.  相似文献   

5.
Summary To test the possibility that stimulation of secretion leads Na,K-ATPase to be recruited from cytoplasmic pools and inserted into basal-lateral plasma membranes, we surveyed the subcellular distributions of Na, K-ATPase in resting and stimulated fragments of rat exorbital lacrimal gland. After a two-dimensional separation procedure based on differential sedimentation and density gradient centrifugation, we defined sixdensity windows, which differ from one another in their contents of biochemical markers. The membranes equilibrating inwindow I could be identified as a sample of basal-lateral membranes; in resting preparations these membranes contained Na,K-ATPase enriched 16.6-fold with respect to the initial homogenates.Windows II throughVI contained various cytoplasmic membrane populations; these accounted for roughly 80% of the total recovered Na,K-ATPase activity. Thirty-minute stimulation with 10 m carbachol caused a 1.4-fold increase (P<0.05) in the total Na,K-ATPase content ofwindow I; this increase could be largely accounted for by a 1.7-fold decrease in the total Na,K-ATPase content ofdensity window V. Acid phosphatase activity also redistributed following stimulation, but it was recruited from a different source, and it was inserted into membranes equilibrating inwindows II andIII as well as into the membranes ofwindow I.  相似文献   

6.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic α-subunit (four isoforms) and an ancillary β-subunit (three isoforms). Mutations in the α2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase α2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase α2-isoform.  相似文献   

7.
《FEBS letters》2014,588(24):4686-4693
β2-Adrenergic agonists have been shown to regulate Na,K-ATPase in the alveolar epithelium by recruiting Na,K-ATPase-containing vesicles to the plasma membrane of alveolar epithelial cells (AEC). Here, we provide evidence that β2-agonists induce store-operated calcium entry (SOCE) in AECs. This calcium entry is necessary for β2-agonist-induced recruitment of Na,K-ATPase to the plasma membrane of AECs. Specifically, we show that β2-agonists induce SOCE via stromal interaction molecule 1 (STIM1)-associated calcium release-activated calcium (CRAC) channels. We also demonstrate that the magnitude of SOCE affects the abundance of Na,K-ATPase at the plasma membrane of AECs.  相似文献   

8.
Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. We show here that graded knockdown of cellular Na/K-ATPase α1 subunit produces a parallel decrease in both caveolin-1 and cholesterol in light fractions of LLC-PK1 cell lysates. This observation is further substantiated by imaging analyses, showing redistribution of cholesterol from the plasma membrane to intracellular compartments in the knockdown cells. Moreover, this regulation is confirmed in α1+/– mouse liver. Functionally, the knockdown-induced redistribution appears to affect the cholesterol sensing in the endoplasmic reticulum, because it activates the sterol regulatory element-binding protein pathway and increases expression of hydroxymethylglutaryl-CoA reductase and low density lipoprotein receptor in the liver. Consistently, we detect a modest increase in hepatic cholesterol as well as a reduction in the plasma cholesterol. Mechanistically, α1+/– livers show increases in cellular Src and ERK activity and redistribution of caveolin-1. Although activation of Src is not required in Na/K-ATPase-mediated regulation of cholesterol distribution, the interaction between the Na/K-ATPase and caveolin-1 is important for this regulation. Taken together, our new findings demonstrate a novel function of the Na/K-ATPase in control of the plasma membrane cholesterol distribution. Moreover, the data also suggest that the plasma membrane Na/K-ATPase-caveolin-1 interaction may represent an important sensing mechanism by which the cells regulate the sterol regulatory element-binding protein pathway.The Na/K-ATPase, also called the sodium pump, is an ion transporter that mediates active transport of Na+ and K+ across the plasma membrane by hydrolyzing ATP (1, 2). The functional sodium pump is mainly composed of α and β subunits. The α subunit is the catalytic component of the holoenzyme; it contains both the nucleotide and the cation binding sites (3). So far, four isoforms of α subunit have been discovered, and each one shows a distinct tissue distribution pattern (4, 5). Interestingly, studies during the past few years have uncovered many non-pumping functions of Na/K-ATPase (610). Recently, we have demonstrated that more than half of the Na/K-ATPase may actually perform cellular functions other than ion pumping at least in LLC-PK1 cells (11). Moreover, the non-pumping pool of Na/K-ATPase mainly resides in caveolae and interacts with a variety of proteins such as Src, inositol 1,4,5-trisphosphate receptor, and caveolin-1 (1214). While the interaction between Na/K-ATPase and inositol 1,4,5-trisphosphate receptor facilitates Ca2+ signaling (13) the dynamic association between Na/K-ATPase and Src appears to be an essential step for ouabain to stimulate cellular kinases (15). More recently, we report that the interaction between the Na/K-ATPase and caveolin-1 plays an important role for the membrane trafficking of caveolin-1. Knockdown of the Na/K-ATPase leads to altered subcellular distribution of caveolin-1 and increases the mobility of caveolin-1-containing vesicles (16).Caveolin is a protein marker for caveolae (17). Caveolae are flask-shaped vesicular invaginations of plasma membrane and are enriched in cholesterol, glycosphingolipids, and sphingomyelin (18). There are three genes and six isoforms of caveolin. Caveolin-1 is a 22-kDa protein and is expressed in many types of cells, including epithelial and endothelial cells. In addition to their role in biogenesis of caveolae (19), accumulating evidence has implicated caveolin proteins in cellular cholesterol homeostasis (20). For instance, caveolin-1 directly binds to cholesterol in a 1:1 ratio (21). It was also found to be an integral member of the intracellular cholesterol trafficking machinery between internal membranes and plasma membrane (22, 23). The expression of caveolin-1 appears to be under control of SREBPs,2 the master regulators of intracellular cholesterol level (24). Furthermore, knockout of caveolin-1 significantly affected cholesterol metabolism in mouse embryonic fibroblasts and mouse peritoneal macrophages (25). Because we found that the Na/K-ATPase regulates cellular distribution of caveolin-1, we propose that it may also affect intracellular cholesterol distribution and metabolism. To test our hypothesis, we have investigated whether sodium pump α1 knockdown affects cholesterol distribution and metabolism both in vitro and in vivo. Our results indicate that sodium pump α1 expression level plays a role in the proper distribution of intracellular cholesterol. Down-regulation of sodium pump α1 not only redistributes cholesterol between the plasma membrane and cytosolic compartments, but also alters cholesterol metabolism in mice.  相似文献   

9.
The effects and modes of action of certain lipid second messengers and protein kinase C regulators, such as sphingosine, lysophosphatidylcholine (lyso-PC), and oleic acid, on Na,K-ATPase and sodium pump were examined. Inhibition of purified rat brain synaptosome Na,K-ATPase by these lipid metabolites, unlike that by ouabain, was subject to membrane dilution (i.e. inhibition being counteracted by increasing amounts of membrane lipids). Kinetic analysis, using the purified enzyme, indicated that sphingosine and lyso-PC were likely to interact, directly or indirectly, with Na+-binding sites of Na,K-ATPase located at the intracellular face of plasma membranes, a conclusion also supported by studies on Na,K-ATPase and 22Na uptake using the inside-out vesicles of human erythrocyte membranes. The studies also showed that ouabain (but not sphingosine and lyso-PC) increased the affinity constant (K0.5) for K+, whereas sphingosine and lyso-PC (but not ouabain) increased K0.5 for Na+. Sphingosine and lyso-PC inhibited 86Rb uptake by intact human leukemia HL-60 cells at potencies comparable to those for inhibitions of purified Na,K-ATPase and protein kinase C. It is suggested that Na,K-ATPase (sodium pump) might represent an additional target system, besides protein kinase C, for sphingosine and possibly other lipid second messengers.  相似文献   

10.
The previously reported class of potent inorganic inhibitors of Na,K-ATPase, named MCS factors, was shown to inhibit not only Na,K-ATPase but several P-type ATPases with high potency in the sub-micromolar range. These MCS factors were found to bind to the intracellular side of the Na, K-ATPase. The inhibition is not competitive with ouabain binding, thus excluding its role as cardiac-steroid-like inhibitor of the Na,K-ATPase. The mechanism of inhibition of Na,K-ATPase was investigated with the fluorescent styryl dye RH421, a dye known to report changes of local electric fields in the membrane dielectric. MCS factors interact with the Na,K-ATPase in the E1 conformation of the ion pump and induce a conformational rearrangement that causes a change of the equilibrium dissociation constant for one of the first two intracellular cation binding sites. The MCS-inhibited state was found to have bound one cation (H+, Na+ or K+) in one of the two unspecific binding sites, and at high Na+ concentrations another Na+ ion was bound to the highly Na+-selective ion-binding site.  相似文献   

11.
Summary Basal lateral membrane vesicles were isolated from rat intestinal epithelial cells. The sodium potassium triphosphatase (Na/K-ATPase) of these plasma membranes has been characterized by (1) the molecular weight of the phosphorylated intermediate, (2) the sensitivity of the phosphorylated intermediate to hydroxylamine, (3) its ouabain binding constants, and (4) its susceptibility to digestion by pronase. The phosphorylated intermediate was shown by SDS polyacrylamide gel electrophoresis to be a protein of 100,000 Daltons apparent mol wt. Its extensive hydrolysis in hydroxylamine demonstrated that it was an acyl phosphate. The isolated basal lateral membranes bound ouabain with a dissociation constant,K m (1.5×10–5 m), similar to the inhibitory constantK I (3×10–5 m), measured for ouabain inhibition of the Na/K-ATPase activity. The association rate constant measured for ouabain binding at 22°C was 1.3×103 m –1 sec–1 and is similar to the association rate constants reported for other tissues and species. The high dissociation rate constant, 3.6×10–2 sec–1, is consistent with the insensitivity of the rat to ouabain. Digestion of the intact cells by pronase yielded basal lateral membranes in which the Na/K-ATPase had been unaffected. The phosphorylated intermediate ran as a sharp band at 100,000 Daltons on electrophoresis, and the ouabain dissociation constant appeared to be unchanged. In these membranes, protein stains of polyacrylamide gels revealed digestion of the major high mol wt proteins including the major protein at 100,000 Daltons. This suggests that the Na/K-ATPase represent a minor component, less than 1%, of the basal lateral membrane protein. From these characteristics of the phosphorylated intermediate and the ouabain binding constants, we conclude that the Na/K-ATPase of the basal lateral membranes of rat intestinal epithelial cells is similar to that found in other tissues and species. Estimates of the number of pump sites and the turnover number predict rates of Na transport that are consistent with observed values.This paper is dedicated to the memory of Professor David H. Smyth, FRS, who died on September 10, 1979.  相似文献   

12.
13.
Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.  相似文献   

14.
Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase   总被引:2,自引:0,他引:2  
Here, we show that the Na/K-ATPase interacts with caveolin-1 (Cav1) and regulates Cav1 trafficking. Graded knockdown of Na/K-ATPase decreases the plasma membrane pool of Cav1, which results in a significant reduction in the number of caveolae on the cell surface. These effects are independent of the pumping function of Na/K-ATPase, and instead depend on interaction between Na/K-ATPase and Cav1 mediated by an N-terminal caveolin-binding motif within the ATPase α1 subunit. Moreover, knockdown of the Na/K-ATPase increases basal levels of active Src and stimulates endocytosis of Cav1 from the plasma membrane. Microtubule-dependent long-range directional trafficking in Na/K-ATPase–depleted cells results in perinuclear accumulation of Cav1-positive vesicles. Finally, Na/K-ATPase knockdown has no effect on processing or exit of Cav1 from the Golgi. Thus, the Na/K-ATPase regulates Cav1 endocytic trafficking and stabilizes the Cav1 plasma membrane pool.  相似文献   

15.
Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. Here, we present experimental evidence demonstrating that over half of the plasma membrane Na/K-ATPase in LLC-PK1 cells is performing cellular functions other than ion pumping. This "non-pumping" pool of Na/K-ATPase, like the pumping pump, binds ouabain. Depletion of either cholesterol or caveolin-1 moves some of the "non-pumping" Na/K-ATPase into the pumping pool. Graded knock-down of the alpha1 subunit of the Na/K-ATPase eventually results in loss of this "non-pumping" pool while preserving the pumping pool. Our prior studies indicate that a loss of the non-pumping pool is associated with a loss of receptor function as evidenced by the failure of ouabain administration to induce the activation of Src and/or ERK. Therefore, our new findings suggest that a substantial amount of surface-expressed Na/K-ATPase, at least in some types of cells, may function as non-canonical ouabain-binding receptors.  相似文献   

16.
Summary Na, K-ATPase function was studied in order to evaluate the mechanism of increased colonic Na+ transport during early postnatal development. The maximum Na+-pumping activity that was represented by the equivalent short-circuit current after addition of nystatin (I sc N ) did not change during postnatal life or after adrenalectomy performed in 16-day-old rats.I sc N was entirely inhibited by ouabain; the inhibitory constant was 0.1mm in 10-day-old (young) and 0.4mm in 90-day-old (adult) rats. The affinity of the Na, K pump for Na+ was higher in young (11mm) than in adult animals (19mm). The Na, K-ATPase activity (measured after unmasking of latent activity by treatment with sodium dodecylsulfate) increased during development and was also not influenced by adrenalectomy of 16-day-old rats. The inhibitory constant for ouabain (K I ) was not changed during development (0.1–0.3mm). Specific [3H]ouabain binding to isolated colonocytes increased during development (19 and 82 pmol/mg protein), the dissociation constant (K D ) was 8 and 21 m in young and adult rats, respectively. The Na+ turnover rate per single Na, K pump, which was calculated fromI sc N and estimated density of binding sites per cm2 of tissue was 500 in adult and 6400 Na+/min·site in young rats. These data indicate that the very high Na+ transport during early postnatal life reflects an elevated turnover rate and increased affinity for Na+ of a single isoform of the Na, K pump. The development of Na+ extrusion across the basolateral membrane is not directly regulated by corticosteroids.  相似文献   

17.
Summary A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and cole material. Sucrase specific activity in the purified brush border plasma membrane was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochromec reductase, nonspecific esterase, -glucoronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity.Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein.Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.  相似文献   

18.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

19.
The Na,K-ATPase is an ion-translocating transmembrane protein that actively maintains the electrochemical gradients for Na+ and K+ across the plasma membrane. The functional protein is a heterodimer comprising a catalytic alpha-subunit (four isoforms) and an ancillary beta-subunit (three isoforms). Mutations in the alpha2-subunit have recently been implicated in familial hemiplegic migraine type 2, but almost no thorough studies of the functional consequences of these mutations have been provided. We investigated the functional properties of the mutations L764P and W887R in the human Na,K-ATPase alpha2-subunit upon heterologous expression in Xenopus oocytes. No Na,K-ATPase-specific pump currents could be detected in cells expressing these mutants. The binding of radiolabelled [3H]ouabain to intact cells suggested that this could be due to a lack of plasma membrane expression. However, plasma membrane isolation showed that the mutated pumps are well expressed at the plasma membrane. 86Rb+-flux and ATPase activity measurements demonstrated that the mutants are inactive. Therefore, the primary disease-causing mechanism is loss-of-function of the Na,K-ATPase alpha2-isoform.  相似文献   

20.
We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号