首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of Leydig cells of the testis of sexually mature and sexually immature spring hares was studied. The cytoplasm of the Leydig of cells the sexually immature spring hares was packed with large lipid droplets leaving little space for the other organelles. Smooth endoplasmic reticulum was poorly developed and occasionally formed concentric layers of fenestrated cisterns around the large lipid droplets. The Leydig of cells the sexually mature spring hares were almost devoid of lipid droplets and their cytoplasm was occupied by abundant tubular smooth endoplasmic reticulum. Cells which shared characteristics with both immature Leydig cells and undifferentiated mesenchymal cells were observed in the limiting membrane of the seminiferous tubulus. These Leydig-like cells may play a role in the differentiation of Leydig cells in the spring hare.  相似文献   

2.
Summary Interactions between Leydig and Sertoli cells, as well as a stimulatory effect of FSH on Leydig cell activity, have been reported in many studies. In order to investigate these interactions, the ultrastructure of immature pig Leydig cells under different culture conditions has been studied. When cultured alone in a chemically defined medium, there is a marked regression of the Leydig cell smooth endoplasmic reticulum and a swelling of the mitochondria. Addition of FSH or hCG does not prevent these phenomena. Co-culturing of Leydig cells with Sertoli cells from the same animal maintains the smooth endoplasmic reticulum at the level seen in vivo and in freshly isolated Leydig cells. The addition of FSH to the co-culture stimulates its development and increases Leydig cell activity, as assessed by an increase in hCG binding sites and an increased steroidogenic response to hCG. These results suggest that Sertoli cells exert a trophic effect on Leydig cells, and that the stimulatory effect of FSH on Leydig cell function is mediated via the Sertoli cells. These results reinforce the concept of a local regulatory control of Leydig cell steroidogenesis.Post-Doctoral fellow supported by CIRIT, Generalitat de Catalunya, Spain  相似文献   

3.
 The distribution of the NADPH diaphorase activity was studied in mouse Leydig cells by means of light and electron microscopy. When observed by the light microscope, most Leydig cells appeared intensely stained; a few cells (about 10%) showed a slightly positive or apparently negative reaction. The inhibitory effects of NG-nitro-l-arginine and iodonium diphenyl on frozen sections suggest the colocalisation of NADPH diaphorase reaction with nitric oxide synthase. The ultrastructural study revealed that all the Leydig cells were positively stained for NADPH diaphorase; however, a small number of cells displayed weak enzymatic activity. The reaction product was located in the mitochondria, smooth endoplasmic reticulum and lipidic vacuoles, and the nuclear envelope was also stained. The possible meaning of the NADPH diaphorase activity in the Leydig cells of mice was discussed. Accepted: 5 September 1997  相似文献   

4.
Summary The bolus administration of prolactin (PRL) to adult rats did not cause any apparent change in the basal and luteinizing hormone (LH)-stimulated blood levels of testosterone (as estimated by radioimmune assay). Prolonged PRL infusion did not affect either basal testosterone plasma concentration or the morphology of Leydig cells (as evaluated by electron microscopy and stereology). Conversely, prolonged PRL treatment notably increased the gonadotrophic effects of chronic LH administration; this mainly consisted of a rise in the blood concentration of testosterone and a conspicuous hypertrophy of Leydig cells. The LH-induced increase in the volume of Leydig cells was the result of an increase in the volumes of all the organelles involved in steroid synthesis (i.e., smooth endoplasmic reticulum, peroxisomes and mitochondria). However, the trophic effects of PRL infusion exclusively concerned smooth endoplasmic reticulum and peroxisomes. In the light of these findings, the hypothesis is advanced that the mechanism underlying the gonadotrophic action of PRL involves an enhancement of the endogenous cholesterol synthesis, which could provide an abundance of precursors for testosterone synthesis, the post-cholesterol steps of which, in turn, would be exclusively controlled by LH.  相似文献   

5.
用光镜及透射电镜观察了乌梢蛇(Zaocys dhumnades)精巢间质细胞的显微与超微结构,并利用放射免疫测定法测定了血清中睾酮浓度.结果表明,在一个年生殖周期中,乌梢蛇间质组织所占区域相对大小、间质细胞数量和显微结构均存在较明显的变化;5月份的间质细胞具有发达的管状嵴线粒体、丰富的滑面内质网、大量的脂滴等合成和分泌...  相似文献   

6.
We have studied the ultrastructure of the testis and interstitial tissue of lizard Lacerta muralis sacrificed in spring, summer and autumn, with special emphasis on the morphological changes of Leydig cells. From the autumn to the end of spring, Leydig cells showed a large smooth endoplasmic reticulum and mitochondria with tubular cristae. These features correlate with the synthesis and secretion of androgens. At the end of spring and after mating, the amount of smooth endoplasmic reticulum decreased and the mitochondria showed laminar cristae. Both features are typical of a latent period, during which time secretion of androgens remains inactive until the end of summer. The possible role of other cell organelles, such as Golgi complex and lysosome-like electron dense bodies, during both secreting and resting periods, is also discussed. Finally, we consider the relationship between seasons, secretory activity of Leydig cells and the spermatogenic cycle.  相似文献   

7.
Summary Human testicular specimens were obtained from biopsies and autopsies covering the period from birth to adulthood. The number of testosterone-containing Leydig cells was determined using the peroxidase-anti-peroxidase method. This number decreased markedly from 3–6 months of age to the end of the first year of life and, up to 6 years of age, only a small number of testosterone-containing cells was found. From 6 years onwards the number of Leydig cells progressively increased. Ultrastructural examination revealed four types of Leydig cells: (1) fetal-type Leydig cells (from birth to 1 year of age) with round nuclei, abundant smooth endoplasmic reticulum and mitochondria with tubular cristae; (2) infantile-type Leydig cells (from birth to 8–10 years of age), showing a multilobated nucleus, moderately abundant smooth endoplasmic reticulum, some lipid droplets and mitochondria with parallel cristae; (3) prepubertal, partially differentiated Leydig cells (from 6 years of age onwards) with regularly-outlined round nuclei, abundant smooth endoplasmic reticulum, mitochondria with tubular cristae, and some lipid droplets and lipofuscin granules; and (4) mature adult Leydig cells (from 8–10 years of age onwards). The ultrastructure of the infantile-type Leydig cells and the lack of delay between the disappearance of the fetal-type Leydig cells and the appearance of infantile-type Leydig cells suggest that fetal-type Leydig cells give rise to the infantile-type Leydig cells. Before puberty, myofibroblast-like precursor cells differentiate into the prepubertal, partially differentiated Leydig cells, which complete their differentiation into the adult Leydig cells.This work was supported by grants from the Comisión Asesora de Investigation Científica y Técnica, and the Fondo de Investigaciones Sanitarias de la Seguridad Social, Madrid, Spain  相似文献   

8.
The regulating effect of follicle-stimulating hormone (FSH) on Leydig cell function was studied using a model of immature porcine Leydig and Sertoli cells cultured in a hormone supplemented defined medium. FSH pretreatment for 2 days of Leydig cells cultured alone was with no effect. FSH pretreatment of Leydig cells cocultured with Sertoli cells increases Leydig cell activity in an FSH dose-dependent manner with a maximal effect observed at 50 ng/ml porcine FSH (pFSH). Leydig cells cultured for 2 days in conditioned medium (CM) by FSH stimulated (FSH-CM) Sertoli cells, as compared to CM by unstimulated (control) (C-CM) Sertoli cells show an increase of their activity with a maximal effect observed at 50 ng/ml pFSH. Leydig cells cultured in CM as compared to non CM, show a marked development of organelles (smooth endoplasmic reticulum and mitochondria) involved in the steroidogenic activity. The activity of FSH-CM as compared to C-CM on Leydig cell function was non dialyzable and trypsin sensitive. These data suggest that Sertoli cells exert a regulatory action on Leydig cell steroidogenic activity via FSH dependent secreted proteins.  相似文献   

9.
Summary The testes of Syrian hamsters underwent pronounced involution within six weeks after blinding. The seminiferous tubules were devoid of all stages of spermatid development and mature spermatozoa were absent from the tubule lumina. The diameter of the Leydig cells was 25 % less than that of controls. Examination with the electron microscope revealed thick bundles of collagen fibrils interspersed between Leydig cells and surrounding Leydig cells in the blinded hamsters. The Leydig cell nuclei were shrunken and highly infolded. Lipid droplets that were often seen in normal Leydig cells were absent in the involuting Leydig cells. The size of the Golgi complex and the amount of smooth endoplasmic reticulum were reduced. Results of the present experiment confirm that inactivity of the Leydig cells is the reason for the decline in serum testosterone levels in blinded hamsters.  相似文献   

10.
大鼠睾丸间质细胞的自体吞噬活动   总被引:2,自引:0,他引:2  
本文结合超微结构和细胞化学观察,研究大鼠睾丸间质细胞(Leydig细胞)中溶酶体的结??构与功能。观察结果表明,大鼠睾丸间质细胞中高尔基体非常发达,在高尔基体的成熟面存在着CMP酶阳性反应的GERL系统,说明这种细胞有不断产生溶酶体的能力。细胞化学结果也证实在睾丸间质细胞有较多的初级和次级溶酶体。睾丸间质细胞不仅有较多的溶酶体,而且还有相当数量的自噬小体,存在着活跃的自体吞噬活动。自噬小体的界膜来源于特化的光面内质网或高尔基体膜囊,包围的内容物主要是光面内质网和少量线粒体。当自噬小体与溶酶体融合后即成为自体吞噬泡,由于酶的消化作用,自体吞噬泡内的细胞器有一系列形态变化。根据CMP酶细胞化学反应,可以区分自噬小体和自体吞噬泡,后者是一种次级溶酶体,呈CMP酶阳性反应。睾丸间质细胞是分泌雄性激素的内分泌细胞,其光面内质网和线粒体在类固醇激素分泌中起重要作用,自体吞噬活动的结果是去除部分内质网和线粒体,可能在细胞水平上起着对雄性激素分泌的调节作用。  相似文献   

11.
The present study was undertaken to document morphological changes in the testis of the seasonally breeding golden hamster, an animal model which has been studied extensively from an endocrine standpoint but for which morphological data is inadequate. Germ cells, Sertoli cells and Leydig cells were studied during active and regressed state of gonadal activity by exposing the animals to long (16L:8D) and short photoperiods (6L:18D), respectively. Testis of the hamster exposed to short photoperiods displayed more than a ten-fold reduction in weight and decreased seminiferous tubule diameter. The seminiferous tubules contained primarily Sertoli cell and spermatogonia but also occasional spermatocytes and round spermatids. Leydig cells were decreased in size, a change which appeared to be primarily due to a decrease in cytoplasmic volume. The Leydig cell endoplasmic reticulum which was atypically saccular displayed both rough and smooth components and was decreased during short photoperiods. Mitochondria generally appeared larger and showed considerable structural heterogeneity. Short photoperiod-induced changes in the Sertoli cells included a marked reduction in cell height and an apparent reduction in cell volume, absence of lateral processes, presence of small, almost spheroidal nuclei with inconspicuous nucleoli, an increase in the amount of lipid and decreases in the amount of smooth endoplasmic reticulum and glycogen. The striking differences in the testicular structure between the active and regressed state of gonadal activity follows photoperiod-induced changes in endocrine parameters and suggests that the hamster would be an ideal model to study structure-function relationships in the testis, and especially those related to the Sertoli cell.  相似文献   

12.
The immunocytochemical localization of aromatase in the testes of young and adult rats was investigated by an indirect-immunofluorescent method using antihuman placental aromatase-II cytochrome P-450 antibody. In both young (1 and 2 weeks old) and adult rats, only the Leydig cells in the interstitial tissue showed a positive immunoreaction for aromatase, while the germ cells and Sertoli cells in the seminiferous tubule were entirely negative. In addition, electron microscopy revealed that the Leydig cells in the testes of young as well as adult rats have a well-developed smooth endoplasmic reticulum, mitochondria with tubulovesicular cristae, and a few lipid droplets, these structures being characteristic of steroid secretory cells. On the basis of these results, we suggest that estrogens are mainly synthesized in Leydig cells of the testes.  相似文献   

13.
The effects of bilateral vasectomy on hormone serum levels as well as Leydig cell and associated macrophage structure were analysed in parallel in rats 36 weeks following the operation. Serum testosterone was decreased in vasectomized rats (1.96 +/- 0.11 ng/ml) compared with control animals (3.44 +/- 0.22 ng/ml, p less than 0.05). Vasectomy also resulted in an increase in serum luteinizing hormone (LH) to 0.299 +/- 0.02 ng/ml compared to the control group (0.175 +/- 0.01 ng/ml, p less than 0.05). Also serum follicle-stimulating hormone (FSH) was increased following vasectomy (350.88 +/- 15.5 ng/ml) compared to 132.0 +/- 4.8 ng/ml in control animals (p less than 0.01). Morphometric analysis of Leydig cells showed hypertrophy with a 19% increase of total cell area, p less than 0.01 (cytoplasm 28%, nucleus 8% increase). On the ultrastructural level, leydig cells demonstrated massively dilated smooth endoplasmic reticulum characteristic for stimulated cells. There was also a significant hypertrophy of the Leydig cell-associated macrophages. The macrophage cell area was enlarged by 22%, p less than 0.01 (cytoplasm 25%, nucleus 18%). Vasectomy also led to remarkable ultrastructural changes of macrophages with a marked dilated and extended rough endoplasmic reticulum. Macrophages were found in apposition to Leydig cells with close cellular contact zones, and they frequently formed cell extensions on Leydig cells. Our data obtained following vasectomy indicate that, by their close contacts to Leydig cells, as well as the known influence on Leydig-cell steroidogenesis, macrophages may form the basis of a local immunoendocrine regulation of the pituitary-gonadal axis.  相似文献   

14.
Ultrastructural study of testicular biopsy specimens from an XX male showed hyalinized seminiferous tubules and tubules containing only mature Sertoli cells. These cells possessed large lipid inclusions as well as microfilament bundles which were perpendicular to the basement membrane and parallel to one another. The basal lamina was thickened and composed of several parallel layers with myofibroblast layers between them. The interstitium showed nodular to diffuse Leydig cell hyperplasia. Four types of Leydig cells were found: 1) normal Leydig cells with crystals of Reinke; 2) cells with abundant microcrystalline inclusions as well as microfilaments and concentric cisternae of smooth endoplasmic reticulum; 3) vacuolated cells containing numerous large lipid droplets; 4) immature Leydig cells. The different ultrastructural abnormalities found in the Sertoli and Leydig cells might be considered as the histological expression of a tubular-interstitial dysgenesis which is reflected in the high levels of gonadotropins and low levels of testosterone.  相似文献   

15.
Summary Leydig cells of the testis of newborn pseudohermaphrodite (tfm) rats have an ultrastructure similar to that of the normal, containing well developed organelles and inclusions. The cytoplasm is filled with smooth endoplasmic reticulum forming a network of interconnected tubules. Lipid droplets are surrounded by cisternae of smooth endoplasmic reticulum and are in close association with pleomorphic mitochondria. Many of the latter are cup-shaped and have tubular cristae and intramitochondrial dense bodies.Essentially, these are characteristics of normal Leydig cells. Accordingly, the production of testosterone by testes from newborn tfm rats is the same as that by testes from normal newborns and adults. However, it is significantly higher than that by testes of tfm adults. Also, the plasma testosterone levels of newborn tfm rats are the same as in the normal newborn, but lower than in normal adults and much lower than in adult tfm animals.Thus, since in the tfm rat the morphology of Leydig cells, androgen production, and maintenance of plasma levels of testosterone are normal in the newborn, but become abnormal with advancing age, it appears that defective androgen action rather than insufficient androgen production is the cause of male pseudohermaphroditism.  相似文献   

16.
Immunocytochemical localization of aromatase in rat testis   总被引:1,自引:0,他引:1  
Summary The immunocytochemical localization of armatase in the testes of young and adult rats was investigated by an indirect-immunofluorescent method using antihuman placental aromatase-II cytochrome P-450 antibody. In both young (1 and 2 weeks old) and adult rats, only the Leydig cells in the interstitial tissue showed a positive immunoreaction for aromatase, while the germ cells and Sertoli cells in the seminiferous tubule were entirely negative. In addition, electron microscopy revealed that the Leydig cells in the testes of young as well as adult rats have a well-developed smooth endoplasmic reticulum, mitochondria with tubulovesicular cristae, and a few lipid droplets; these structures being characteristic of steroid secretory cells. On the basis of these results, we suggest that estrogens are mainly synthesized in Leydig cells of the testes.Supported by grants from the Ministry of Education, Science, and Culture, Japan, and USPHS HD 04945  相似文献   

17.
Histogenesis of human extraparenchymal Leydig cells   总被引:2,自引:0,他引:2  
M Nistal  R Paniagua 《Acta anatomica》1979,105(2):188-197
From 64 consecutive autopsies of patients with neither testicular nor hormonal pathology, 26 showed extraparenchymal Leydig cells, located mainly in the epididymis and in the spermatic cord. The ultrastructural study of these specimens plus those obtained from 2 patients affected with functional testicular tumors leads to the following conclusions: (1) The origin of ectopic Leydig cells is not interstitial Leydig cells having infiltrated the testicular nerves and migrated along them towards ectopic locations. (2) The ectopic Leydig cells are considered to develop from undifferentiated precursor cells, located extraparenchymally, mainly inside and beside the testicular nerves. These precursor cells are similar to those observed in the testicular interstitium and have an ovoid shape and some cytoplasmic projections. The cytoplasm contains vesicles of smooth endoplasmic reticulum, lysosomes, lipid droplets and abundant microfilament bundles. The transformation from these cells into mature Leydig cells implies a progressive differentiation of the cytoplasmic components involved in steroid biosynthesis.  相似文献   

18.
Ultrastructural examination of the marbled newt (Triturus marmoratus) testis throughout the annual cycle revealed that during the period of testicular quiescence (November-February), primordial germ cells proliferate within cords of filament-rich epithelial cells that will become follicular cells (FCs). Fibroblast-like cells surround the FCs and form the lobule-boundary interstitial cells (ICs). During the period of germ cell development from primordial germ cells to round spermatids (March-June), the FCs surrounding the developing germ cells contain scanty cytoplasm with abundant rough endoplasmic reticulum and scarce filaments. With spermatid elongation (July-August), the FC size grows, its nucleus becomes irregularly outlined, and its cytoplasm displays abundant smooth endoplasmic reticulum, residual bodies, lipid droplets, and large vacuoles. After spermatozoon release by the FCs (August-September), the adjacent ICs increase their size and transform into Leydig cells with abundant smooth endoplasmic reticulum, mitochondria with tubular cristae, and lipid droplets. During the period of testicular quiescence (November-February), the Leydig cells undergo involution, eventually developing the morphological attributes of mesenchymal cells. Intermingled among these cells, cords of filament-rich cells are observed. During this period of the cycle, spermatozoon cysts supported by FCs are present. At the beginning of the germ cell proliferation period (March), these spermatozoa are released, and the adjacent ICs undergo a transformation into Leydig cells similar to those observed in August-September. Maturation and involution of ICs occur when testosterone levels are known to be rising and falling, respectively.  相似文献   

19.
Components of the testis and cytoplasmic organelles in Leydig cells were quantified with morphometric techniques in hamster, rat, and guinea pig. Testosterone secretory capacity per gram of testis and per Leydig cell in response to luteinizing hormone (LH) (100 ng/ml) stimulation was determined in these three species from testes perfused in vitro. Numerous correlations were measured among structures, and between structures and testosterone secretion, to provide structural evidence of intratesticular control of Leydig cell function. Testosterone secretion per gm testis and per Leydig cell was significantly different in the three species: highest in the guinea pig, intermediate in the rat, and lowest in the hamster. The volume of seminiferous tubules per gm testis was negatively correlated, and the volumes of interstitium, Leydig cells, and lymphatic space per gm testis were positively correlated with testosterone secretion. No correlations were observed between volumes of blood vessels, elongated spindleshaped cells, or macrophages per gm testes and testosterone secretion. The average volume of a Leydig cell and the volume and surface area of smooth endoplasmic reticulum (SER) and peroxisomes per Leydig cell were positively correlated, and the volume of lysosomes and surface area of inner mitochondrial membrane per Leydig cell were negatively correlated with testosterone secretion. No correlations were observed between volume and surface area of rough endoplasmic reticulum (RER), Golgi apparatus, and lipid, and volume of ribosomes, cytoplasmic matrix, and the nucleus with testosterone secretion per Leydig cell. These results suggest that Leydig cell size is more important than number of Leydig cells in explaining the difference in testosterone-secreting capacity among the three species, and that this increase in average volume of a Leydig cell is associated specifically with increased volume and surface area of SER and peroxisomes. An important unresolved question is what is the role of peroxisomes in Leydig cell steroidogenesis.  相似文献   

20.
Leydig cells prepared routinely (glutaraldehyde--osmium) for ultrastructural studies are generally found to be lacking in subcellular detail as a result of poor membrane preservation and a dense cytoplasmic matrix. A method modified after that of Karnovsky (1971), utilizing a ferrocyanide--osmium mixture for post-treating glutaraldehyde fixed tissued, was found to yield routinely excellent preservation of Leydig cells. The primary advantages of this method were the enhancement of contrast within the Leydig cell and greatly improved membrane preservation. In addition, the smooth endoplasmic reticulum always appeared as an extensive network of interconnected tubules of uniform diameter; mitochondria, lysosomes, peroxisomes, multivesicular bodies, and Golgi were especially prominent. Glycogen and microfilaments, not readily seen in routine preparations, were found to be abundant in these cells. New observations on the numbers and distributions of subcellular organelles are described and are discussed in relation to their possible role in the steroidogenic process. In view of the greatly improved tissue preservation observed in this study, it is suggested that this treatment be used routinely for preservation of rat Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号