首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When introduced into a chemically defined minimal medium supplemented with 1 mM sodium selenite (79 ppm Se(o)), Bacillus subtilis was found to undergo a series of morphological and biochemical adaptations. The morphological changes included the formation of "round bodies" associated with the detoxification of selenite to elemental selenium. Round bodies observed transiently were not apparent during balanced growth of cells adapted previously to selenite-containing medium. Under balanced growth conditions, cell structures similar to "round bodies", could be produced by treating cells with lysozyme. The selenite-induced structural alterations in cells were accompanied by an increase in the content of thioredoxin and the associated enzyme, NADP-thioredoxin reductase. The results suggest that the biovalence transformation of high levels of selenite may involve a dithiol system.  相似文献   

2.
3.
4.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

5.
Three metE mutations of Bacillus subtilis, which cause cells to have a 25- to 200-fold decrease in L-methionine S-adenosyltransferase (EC 2.5.1.6) activity, were mapped between bioB and thr. The corresponding three metE mutants contained three- to fourfold less intracellular S-adenosylmethionine (SAM) but at least sevenfold more methionine than the metE+ strain when grown in synthetic medium. This indicates a strong feedback control of SAM on its synthesis. However, only the metE2 strain, with the lowest SAM concentration, grew at a slightly lower rate than the parent, which showed that an intracellular concentration of about 25 microM SAM was critical for growth at the normal rate. Neither DNA methylation (measured by bacteriophage luminal diameter 105 restriction) nor sporulation was affected at this low SAM concentration. Addition of methionine to the growth medium caused an increase in the pool of SAM in some but not all metE mutants. Coaddition of adenine did not change this result. However, the extent of sporulation (induced by mycophenolic acid) was decreased 50-fold in all mutants by the addition of methionine and adenine. Therefore, the combination of methionine and adenine suppresses sporulation regardless of whether it causes an increase in the level of SAM.  相似文献   

6.
Höper D  Bernhardt J  Hecker M 《Proteomics》2006,6(5):1550-1562
The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth. The enzymes catalyzing the metabolic steps from glucose to 2-oxoglutarate, however, were almost constantly synthesized during salt stress despite the growth arrest. This indicates an enhanced need for the proline precursor glutamate. The synthesis of enzymes involved in sulfate assimilation and in the formation of Fe-S clusters was also induced, suggesting an enhanced need for the formation or repair of Fe-S clusters in response to salt stress. One of the most obvious changes in the protein synthesis profile can be followed by the very strong induction of the SigB regulon. Furthermore, members of the SigW regulon and of the PerR regulon, indicating oxidative stress after salt challenge, were also induced. This proteomic approach provides an overview of cell adaptation to an osmotic upshift in B. subtilis visualizing the most dramatic changes in the protein synthesis pattern.  相似文献   

7.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

8.
Ma Z  Lee JW  Helmann JD 《Nucleic acids research》2011,39(12):5036-5044
Bacillus subtilis PerR is a Fur family repressor that senses hydrogen peroxide by metal-catalyzed oxidation. PerR contains a structural Zn(II) ion (Site 1) and a regulatory metal binding site (Site 2) that, upon association with either Mn(II) or Fe(II), allosterically activates DNA binding. In addition, a third less conserved metal binding site (Site 3) is present near the dimer interface in several crystal structures of homologous Fur family proteins. Here, we show that PerR proteins with substitutions of putative Site 3 residues (Y92A, E114A and H128A) are functional as repressors, but are unexpectedly compromised in their ability to sense H(2)O(2). Consistently, these mutants utilize Mn(II) but not Fe(II) as a co-repressor in vivo. Metal titrations failed to identify a third binding site in PerR, and inspection of the PerR structure suggests that these residues instead constitute a hydrogen binding network that modulates the architecture, and consequently the metal selectivity, of Site 2. PerR H128A binds DNA with high affinity, but has a significantly reduced affinity for Fe(II), and to a lesser extent for Mn(II). The ability of PerR H128A to bind Fe(II) in vivo and to thereby respond efficiently to H(2)O(2) was restored in a fur mutant strain with elevated cytosolic iron concentration.  相似文献   

9.
Genetic mapping in Bacillus subtilis   总被引:75,自引:0,他引:75  
  相似文献   

10.
Boron (B) is an essential micronutrient for higher plants. There is wide genetic variation in the response to B deficiency among plant species and cultivars. The objective of this study was to identify quantitative trait loci (QTL) that control B efficiency in natural Arabidopsis accessions. The B efficiency coefficient (BEC) and seed yield under low B conditions (SYLB) were investigated by solution culture in two separate experiments in an Arabidopsis recombinant inbred line (RIL) population. Both of the traits studied exhibited high transgressive variation in the RIL population, and, in total, five and three QTL were identified for BEC and SYLB, respectively. Three of the five QTL, including the QTL, AtBE1-2, that has a large effect on the BEC, were found at the interval of the corresponding QTL for SYLB in both experiments. The close genetic relationship between BEC and SYLB was further confirmed by conditional QTL mapping in the RIL population and unconditional QTL mapping in an AtBE1-2-segregated F(2) population. Epistatic interactions for the tested traits were analysed, and were found to be widespread in the detected QTL of Arabidopsis in the RIL population. Comparison of the QTL interval for B efficiency with reported B-related genes showed that 10 B-related genes, together with one BOR1 homolog (BOR5, At1g74810) were located in the QTL region of AtBE1-2. These results suggest that natural variation in B efficiency in Arabidopsis has a complex molecular basis. They also provide a basis for fine mapping and cloning of the B-efficiency genes, with the ultimate aim of discovering the physiological mechanism of action of the genes.  相似文献   

11.
The Bacillus subtilis sigA gene encodes the primary sigma factor of RNA polymerase and is essential for cell growth. We have mutated conserved region 2.3 of the sigma A protein to substitute each of seven aromatic amino acids with alanine. Several of these aromatic amino acids are proposed to form a melting motif which facilitates the strand separation step of initiation. Holoenzymes containing mutant sigma factors recognize promoters, but some are defective for DNA melting in vitro. We have studied the ability of each mutant sigma factor to support cell growth by gene replacement and complementation. The two region 2.3 mutants least impaired in promoter melting in vitro (Y180A and Y184A) support cell growth in single copy, although the Y184A allele imparts a slow-growth phenotype at low temperatures. A strain expressing only the Y189A variant of the sigma A protein, known to be defective in DNA melting in vitro, grows very slowly and is altered in its pattern of protein synthesis. Only the wild-type and Y180A sigma A proteins efficiently complement a temperature-sensitive allele of sigA. Overexpression of three of the sigma A proteins defective for promoter melting in vitro (Y189A, W192A, and W193A) leads to a decrease in RNA synthesis and cell death. These results indicate that mutations which specifically impair DNA melting in vitro also impair sigma function in vivo and therefore support the hypothesis that sigma plays an essential role in both DNA melting and promoter recognition.  相似文献   

12.
13.
Bacillus subtilis, a Gram-positive soil bacterium, provides a model system for the study of metal ion homeostasis. Metalloregulatory proteins serve as the arbiters of metal ion sufficiency and regulate the expression of metal homeostasis pathways. In B. subtilis, uptake systems are regulated by the highly selective metal-sensing repressors Fur (iron), Zur (zinc), and MntR (manganese). Metal efflux systems are regulated by MerR and ArsR family homologs which, by contrast, can be rather non-specific with regard to metal selectivity. A Fur homolog, PerR, functions as an Fe(II)-dependent peroxide stress sensor and regulates putative metal transport and storage functions.  相似文献   

14.
15.
16.
17.
Summary Some evidence was obtained that genetic interaction occurs inBacillus subtilis K. A mixed inoculation of two doubly auxotrophic mutants onto approriate media yielded tiny colonies which seemed to be initiated by heterocaryons or heterozygotes. The tiny colonies contained not only a recombinant type which acquired two characters from one or another parent, but also some abnormal types having new characters which were not recognized in either parent. The phenomenon is similar to the genetic interaction found inStreptomyces.With 5 Figures in the Text  相似文献   

18.
Genetic competence in Bacillus subtilis.   总被引:61,自引:5,他引:56       下载免费PDF全文
  相似文献   

19.
20.
The metal dependence of Bacillus subtilis phytase   总被引:5,自引:0,他引:5  
The metal ion requirement of a Bacillus subtilis phytase has been studied. Removal of metal ions from the enzyme by EDTA resulted in complete inactivation. Circular dichroism spectroscopy was used to study the effect of metal ion removal on the protein conformation. The loss of enzymatic activity is most likely due to a conformational change, as the circular dichroism spectra of holoenzyme and metal-depleted enzyme were different. Metal-depleted enzyme was partially able to restore the active conformation when incubated in the presence of calcium. Only minor reactivation was detected with other divalent metal ions and their combinations. Based on the data we conclude that B. subtilis phytase requires calcium for active conformation. Calcium has also a strong stabilizing effect on the enzyme against thermal denaturation. However, the conformational change resulted by calcium depletion does not affect the protease susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号