首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
施氮水平对水稻生育后期地上部氨挥发的影响   总被引:8,自引:0,他引:8  
采用温室盆栽模拟试验,研究了不同施氮水平下水稻开花后地上部氨挥发及其影响因素.结果表明:不同品种水稻开花后地上部日氨挥发量和开花至成熟期的氨挥发总量均随施氮量的增加而增加,且不同施氮水平间存在一定差异.花期和成熟期水稻地上部氨挥发量(y)与功能叶片谷氨酰胺合成酶(GS)活性(x1)呈显著负相关,而与功能叶片质外体NH4+浓度(x2)呈显著正相关:y=-0.37846x1+0.41821x2+0.04925(R2=0.9471,n=16).水稻氮素收获指数(x1)和氮肥生理利用率(x2)均与地上部氨挥发总量(y)呈显著负相关:y=-0.02117x1+0.75186(R2=0.8426,n=8)和y=-1.10386x2+35.52676(R2=0.8489,n=8),说明高氮水平下水稻氮肥利用率的下降与水稻地上部氨挥发量的增加有关.  相似文献   

2.
The present study addresses the hypothesis that enhanced expression of glutamine synthetase (GS) in transgenic poplar, characterized by the ectopic expression of pine cytosolic GS, results in an enhanced efficiency of nitrogen (N) assimilation and enhanced growth. Transgenic and control poplar were supplied with low and high N levels and the role of ectopic expression of the pine GS in growth and N assimilation was assessed by using amino acid analysis, (15)N enrichment, biochemical analyses, and growth measurements. While leaves of transgenic poplar contained 85% less (P < 0.01) free ammonium than leaves of nontransgenic control plants, leaves of transgenics showed increases in the levels of free glutamine and total free amino acids. Transgenic poplar lines also displayed significant increases in growth parameters when compared with controls grown under both low (0.3 mm) and high (10 mm) nitrate conditions. Furthermore, (15)N-enrichment experiments showed that 27% more (P < 0.05) (15)N was incorporated into structural compounds in transgenic lines than in nontransgenic controls. Using the methods described here, we present direct evidence for increased N assimilation efficiency and growth in GS transgenic lines.  相似文献   

3.
The leaf extension rate (LER) of tall fescue (Festuca arundinaceaSchreb.) was studied in the field under various nitrogen andtemperature regimes. The LER was closely related to temperaturewhen N was not limiting plant growth. Two distinct relationshipsbetween the LER and the temperature were obtained, one for vegetativegrowth and one for the reproductive period. These relationships,described by a Gompertz function, were exponential at temperaturesbelow 8 °C and linear at temperatures above 8 °C. Theymade possible the calculation of an optimal LER correspondingto non-limiting N conditions for plant growth. The strong influence of the temperature on the LER was stillobserved under N limiting conditions. The N status of the swardswas described by the ratio between the actual N content (Nactual)and the optimal N content (Noptimal). The Noptimal was definedas the N content experienced at a non-limiting level of N nutritionbut without N luxury consumption. The Noptimal, expressed asa function of dry matter yield, declined during growth. Theeffect of the N status of the swards on the LER was analysedby calculating the ratio between the actual LER and the optimalLER, and relating it to the ratio between Nactual and Noptimal.It was shown that these two ratios were highly correlated. Leaf extension, Festuca arundinacea, nitrogen, temperature  相似文献   

4.
Nitrogen, which is a major limiting nutrient for plant growth, is assimilated as ammonium by the concerted action of glutamine synthetase (GS) and glutamate synthase (GOGAT). GS catalyses the critical incorporation of inorganic ammonium into the amino acid glutamine. Two types of GS isozymes, located in the cytosol (GS1) and in the chloroplast (GS2) have been identified in plants. Tobacco (Nicotiana tabacum) transformants, over-expressing GS1 driven by the constitutive CaMV 35S promoter were analysed. GS in leaves of GS-5 and GS-8 plants was up-regulated, at the level of RNA and proteins. These transgenic plants had six times higher leaf GS activity than controls. Under optimum nitrogen fertilization conditions there was no effect of GS over-expression on photosynthesis or growth. However, under nitrogen starvation the GS transgenics had c. 70% higher shoot and c. 100% greater root dry weight as well as 50% more leaf area than low nitrogen controls. This was achieved by the maintenance of photosynthesis at rates indistinguishable from plants under high nitrogen, while photosynthesis in control plants was inhibited by 40-50% by nitrogen deprivation. It was demonstrated that manipulation of GS activity has the potential to maintain crop photosynthetic productivity while reducing nitrogen fertilization and the concomitant pollution.  相似文献   

5.
硝态氮(NO3^—)对水稻侧根生长及其氮吸收的影响   总被引:6,自引:0,他引:6  
侧根是植物吸收利用土壤养分的重要器官 ,其生长发育受内部遗传因子和外部环境矿质养分的影响。通过琼脂分层培养发现 :局部供应NO-3 可以诱导水稻 (OryzasativaL .)主根或不定根上侧根的生长。为研究旱种条件下NO-3 对水稻侧根发育及其N吸收的影响 ,设置了 3个蛭石培养实验 :分根处理、全株缺N、全株供N处理。分根处理 (一半根系供应 3mmol/LKNO3,另一半根系供应 3mmol/LKCl)结果表明 :局部供应NO-3 能够促进水稻侧根生长。而在全株处理下 ,N饥饿诱导了侧根的伸长。水稻根系对NO-3 的这两种反应都存在着显著的基因型差异。同时对地上部N浓度、可溶性总糖含量及N含量分析表明 ,这些生理指标在分根处理与全株加N处理中的差异均不显著 ,表明分根处理也能基本满足植株正常生长对N的需求。在分根处理中 ,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关 ,这表明在养分不均一的介质中 ,侧根长度对水稻N素吸收具有十分重要的作用。而在N素充足的条件下 ,两者之间的相关性并不显著 ,这暗示在养分充足的环境下 ,侧根长度可能并不是决定根系吸收N素的主要因素  相似文献   

6.
The literature on the relations between plant nitrogen (N) assimilation enzymes and plant/crop N assimilation, growth and yield is reviewed to assess if genetic manipulation of the activities of N assimilation enzymes can result in increased yield and/or increased N use efficiency. The available data indicate that (I) levels of N assimilation enzymes do not limit primary N assimilation and hence yield; (II) root or shoot nitrate assimilation can have advantages under specific environmental conditions; (III) for cereals, cytosolic glutamine synthetase (GS1) is a key enzyme in the mobilisation of N from senescing leaves and its activity in senescing leaves is positively related to yield; and (TV) for rice (Oryza sativd), NADH-glutamate synthase (NADH-GOGAT) is important in the utilisation of N in grain filling and its activity in developing grains is positively related to yield. In our opinion, selection of plants, from either a genetically manipulated population or genetic resources, with expression of nitrate reductase/nitrite reductase primarily in the root or shoot should increase plant/crop growth and hence yield under specific environmental conditions. In addition for cereals the selection of plants with high GS1 in senescing leaves and in some cases high NADH-GOGAT in developing grains could help maximise the retrieval of plant N in seeds.  相似文献   

7.
Salinity has been shown to be a major factor contributing to low nitrogen availability in plants. To verify the changes in nitrogen metabolism activity as affected by the exogenous application of proline under salt stress and its relation to salt tolerance, in vitro rice shoot apices were used as a model to study the growth performance and changes in nitrogen assimilation activities in two Malaysian rice cultivars MR 220 and MR 253. Results revealed that salt stress greatly reduced the plant height, shoot nitrate (NO3 ?) content, shoot glutamine synthetase (GS), and root nitrate reductase (NR) activities in both cultivars. Supplementation of proline significantly increased the plant height, number of roots, root NO3 ? content, root NR, and root GS activities under salt stress in both cultivars with greater enhancement in MR 253 than MR 220. The results also indicated that MR 253 possessed higher nitrite reductase (NiR) and glutamate synthase (NADH–GOGAT) activities as compared with MR 220 in all tested treatments. It was suggested that the NO3 ? content, NR, and GS activities played important roles in regulating nitrogen metabolism under salt stress. Taken together, it was concluded that the ability of proline in mitigating salt stress-induced damages was correlated with the changes in nitrogen assimilation activities.  相似文献   

8.
Water stress-induced spikelet sterility limits rice production under upland conditions. The causes of spikelet sterility under drought stress are poorly understood. In this study the role of antioxidant defence management in drought-induced spikelet sterility was investigated in two rice ( Oryza sativa ) genotypes differing in drought resistance. Drought-resistant N22 genotype showed less water stress-induced spikelet sterility when compared to the susceptible N118 genotype under upland conditions. The N22 panicles maintained higher RWC and turgor potential and lower H2O2 levels across the developmental stages under water stress than that of N118 panicles. Drought-induced enhancement in superoxide dismutase (SOD, EC 1.15.1.1) activity coupled with higher ascorbate (AsA), glutathione (GSH) content and enhanced ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) activities resulted in lower H2O2 levels in N22 panicles. In contrast, insufficient enhancement in SOD, APX and GR activities resulted in relatively higher H2O2 levels under water stress in N118 panicles. The N22 panicles exhibited a higher number of SOD and APX isozymes in comparison with N118 panicles that might provide better reactive oxygen species scavenging. Hence it is concluded that well-equipped antioxidant defence plays an important role in minimizing water stress-induced spikelet sterility in upland rice.  相似文献   

9.
Differences in growth, nodulation and arbuscular mycorrhizal fungi (AMF) root infection among recent cowpea breeding lines from IITA were examined at low and high P levels in pot (94 lines) and field experiments (43 lines) at Fashola in the derived savanna zone of Nigeria. Based on their growth performance, these lines were subdivided into 5 groups: (i) poor performance under low and high P conditions; (ii) good performance under low P and poor performance under high P; (iii) intermediate performance under high and low P; (iv) good performance under high and low P conditions; and (v) good performance under high P and poor performance under low P. About 42% of the breeding lines (18 out of 43 lines tested) had the same grouping for the field and pot experiments. Eight cowpea lines (4 P-responders and 4 non-P-responders) were selected from the first experiment for subsequent studies on the effect of P supply (0, 20, 40 and 60 kg P ha-1) on P uptake, P use efficiency, dry matter production, N-fixation, AMF infection and N balance. Dry matter production, shoot/root ratio, total shoot N, and total N-fixed of the non-P-responder line, IT81D-715, were strongly related to P uptake efficiency. The P-responder IT81D-849 had a significant (95%) correlation between AMF and P-use efficiency. The cowpea lines fixed on average 22 kg N ha-1, which was 70% of the plant total N. The N balance based on the difference between the amount of N2 fixed and N exported through the harvest, ranged between −10.6 kg N ha-1 and +7.7 kg N ha-1. Based on its adaptability to grow in low P soils and overall positive N balance, the cowpea line IT81D-715 should be recommended for cultivation when P is the limiting factor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T(1) progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated.  相似文献   

11.
侧根是植物吸收利用土壤养分的重要器官,其生长发育受内部遗传因子和外部环境矿质养分的影响.通过琼脂分层培养发现:局部供应NO-3可以诱导水稻( Oryza sativa L.)主根或不定根上侧根的生长.为研究旱种条件下NO-3对水稻侧根发育及其N吸收的影响,设置了3个蛭石培养实验:分根处理、全株缺N、全株供N处理.分根处理(一半根系供应3 mmol/L KNO3,另一半根系供应3 mmol/L KCl)结果表明:局部供应NO-3 能够促进水稻侧根生长.而在全株处理下,N饥饿诱导了侧根的伸长.水稻根系对NO-3的这两种反应都存在着显著的基因型差异.同时对地上部N浓度、可溶性总糖含量及N含量分析表明,这些生理指标在分根处理与全株加N处理中的差异均不显著,表明分根处理也能基本满足植株正常生长对N的需求.在分根处理中,水稻的N含量与分根处理中供N一侧的平均侧根长度存在显著正相关,这表明在养分不均一的介质中,侧根长度对水稻N素吸收具有十分重要的作用.而在N素充足的条件下,两者之间的相关性并不显著,这暗示在养分充足的环境下,侧根长度可能并不是决定根系吸收N素的主要因素.  相似文献   

12.
Water and nitrogen (N) are two of the most important abiotic factors limiting rice yield. However, a little information is available on why a moderate water and N interaction significantly increase rice biomass, from the point of view of photosynthetic physiology. A pot experiment with three water regimes [continued flood (CF), alternate wetting and moderate drying (WMD), and alternate wetting and severe drying (WSD)] and four N application levels (no nitrogen, N0; 90 kg hm?2, N1; 180 kg hm?2, N2; 270 kg hm?2, N3) was carried out to investigate this problem. Results demonstrated that WSD significantly inhibited rice height, leaf area, chlorophyll content, photosynthesis, and yield at the four different N levels, as compared to that with CF and WMD. However, WMD substantially alleviated these reductions, and their values were not significantly different from those of CF. Contents of leaf soluble protein and total chlorophyll in WMD were increased compared to the WSD, and this mitigating effect was beneficial to the increase of rice photosynthesis and yield development. Photosynthesis in rice leaf was significantly affected by water status but not N level. Analysis of variance demonstrated a significant effect of water on spikelet number, which indicates that the reduction of spikelet number under water stress may be the major reason for its low yield. Therefore, we concluded that WMD could be considered as an effective water management regime to obtain high yield in rice production, and its strengthened drought tolerance was closely associated with the higher dry matter and in the physiological characteristics including an increase in spikelet number, chlorophyll and soluble protein contents, and photosynthetic rate.  相似文献   

13.
Fei H  Chaillou S  Hirel B  Mahon JD  Vessey JK 《Planta》2003,216(3):467-474
A glutamine synthetase gene ( GS15) coding for soybean cytosolic glutamine synthetase (GS1) fused to a constitutive promoter (CaMV 35S), a putative nodule-specific promoter (LBC(3)) and a putative root-specific promoter (rolD) was transformed into Pisum sativum L. cv. Greenfeast. Four lines with single copies of GS15 (one 35S-GS15 line, one LBC (3) -GS15 line, and two rolD-GS15 lines) were tested for the expression of GS15, levels of GS1, GS activity, N accumulation, N(2) fixation, and plant growth at different levels of nitrate. Enhanced levels of GS1 were detected in leaves of three transformed lines (the 35S-GS15 and rolD-GS15 transformants), in nodules of three lines (the LBC (3) -GS15 and rolD-GS15 transformants), and in roots of all four transformants. Despite increased levels of GS1 in leaves and nodules, there were no differences in GS activity in these tissues or in whole-plant N content, N(2) fixation, or biomass accumulation among all the transgenic lines and the wild-type control. However, the rolD-GS15 transformants, which displayed the highest levels of GS1 in the roots of all the transformants, had significantly higher GS activity in roots than the wild type. In one of the rolD-GS15 transformed lines (Line 8), increased root GS activity resulted in a lower N content and biomass accumulation, supporting the findings of earlier studies with Lotus japonicus (Limami et al. 1999 ). However, N content and biomass accumulation was not negatively affected in the other rolD-GS15 transformant (Line 9) and, in fact, these parameters were positively affected in the 0.1 mM treatment. These findings indicate that overexpression of GS15 in various tissues of pea does not consistently result in increases in GS activity. The current study also indicates that the increase in root GS activity is not always consistent with decreases in plant N and biomass accumulation and that further investigation of the relationship between root GS activity and growth responses is warranted.  相似文献   

14.
水分胁迫对水稻籽粒蛋白质积累及营养品质的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
以生产上广泛使用的水稻(Oryza sativa)品种‘汕优63’、‘扬稻6号’和‘武育粳3号’为材料,研究了水分胁迫对结实期水稻籽粒蛋白质积累及营养品质的影响。结果表明:正常施氮水平下,花后10~20 d的水分胁迫提高了谷氨酰胺合成酶(Glutamine synthetase,GS)和谷氨酸合酶(Glutamate synthase,GOGAT)活性,提高了籽粒自身利用无机氮合成氨基酸的能力,从而利于籽粒内蛋白质的积累,而高氮水平下,水分胁迫降低了籽粒自身合成氨基酸的能力。以重量为基数的蛋白质含有率在整个灌浆过程中呈“V”型消长,正常施氮水平下,水分胁迫明显提高了花后15 d至成熟期蛋白质含有率,而高氮水平下,水分胁迫处理的蛋白质含有率明显低于水层灌溉。与水层灌溉相比,水分胁迫提高了正常施氮水平下精米中醇溶蛋白和谷蛋白含量,但却明显降低了高氮水平下精米中醇溶蛋白和谷蛋白含量。水分胁迫对稻米中赖氨酸含量的影响因品种、植株的氮营养水平的不同而不同,水分胁迫显著降低了两种氮肥水平下‘汕优63’中赖氨酸含量,但却明显提高‘扬稻6号’中赖氨酸含量;而‘武育粳3号’于两种氮肥水平下表现恰好相反,正常施氮水平下赖氨酸含量略有升高;而高氮水平下赖氨酸含量明显降低。  相似文献   

15.
16.
A soybean cytosolic glutamine synthetase gene (GS15) fused to a constitutive promoter (CaMV 35S), a putative nodule-specific promoter (LBC(3)), or a putative root-specific promoter (rolD) was transformed into Pisum sativum L. cv. Greenfeast. Four lines with single copies (Lines 1, 7, 8 and 9) and four lines with two copies each of GS15 (Lines 2, 4, 6 and 11) were compared to the wild-type (WT) parental line for levels of cytosolic glutamine synthetase (GS1), glutamine synthetase (GS) activity, N accumulation, N derived form the atmosphere (NDFA), and biomass of plants grown on 0.0, 0.1, 1.0 or 10.0 mM NH(4)(+). Enhanced levels of GS1 were detected in leaves of one of the two lines transformed with the 35S-GS15 construct, and all three lines containing the rolD-GS15 construct. All three lines containing the LBC(3)-GS15 construct had increased levels of GS1 in nodules. Despite the increased levels of GS1 in many transformants, only the roots of lines containing the rolD-GS15 construct consistently demonstrated enhanced levels of GS activity (up to 12-fold). Positive responses in plant N content, NDFA, and biomass were rare, but increases in plant biomass and N content of up to 17% and 54%, respectively, occurred in some of the rolD-GS15 lines at certain levels of ammonium. In general, GS15 copy number did not seem to differentially affect phenotype of the transformants, and transformants respond to ammonium concentrations in similar patterns to that previously observed with nitrate. Despite the fact that the rolD-GS15 transformants consistently resulted in increased GS activity in roots and resulted in some occurrences of increases in biomass and plant N content, the lack of consistent positive growth effect across all transformants indicates that the generalized overexpression of GS1 in tissues holds little potential for positive growth responses in pea.  相似文献   

17.
18.
19.
Selenastrum minutum (Naeg.) Collins was grown over a wide range of growth rates under phosphate or nitrate limitation with non-limiting nutrients added to great excess. This resulted in saturated luxury consumption. The relationships between growth rate and cell quota for the limiting nutrients were well described by the Droop relationship. The observed variability in N cell quota under N limitation as reflected in kQ·Qmax?1*, was similar in magnitude to previously reported values but kQ·Qmax?1* for P under P limitation was greater than previously reported for other species. These results were evaluated in light of the optimum ratio hypothesis. Our findings support previous work suggesting that the use of a single optimum ratio (kQi·KQj?1) is inappropriate for dealing with a species growing under steady-state nutrient limitation. Under these conditions the optimum ratio should be viewed as a growth rate dependent variable. Two approaches for testing the growth rate dependency of optimum ratios are proposed. The capacity for luxury consumption differed between nutrients and was growth rate dependent. At low growth rates, the coefficient of luxury consumption (Rsat) for P was ca. four times that for N. The set of all possible relationships between N and P cell quota under these conditions was reported and these values were then used to establish the cellular N:P niche boundaries for S. minutum. Cell quotas of non-limiting nutrients were not described by the Droop equation. Analysis showed that as the cellular N:P ratio deviates from the optimum ratio, the ability of the Droop equation to describe the relationship between growth rate and non-limiting cell quotas decreases. When non-limiting nutrient cell quotas are saturated, the Droop equation appears to be invalid. Previously reported patterns of non-limiting nutrient utilization are summarized in support of this conclusion. The physiological and ecological consequences of luxury consumption and growth rate dependent optimum ratios are considered.  相似文献   

20.
Drought is the major environmental stress that limits rice productivity worldwide. In vitro somaclonal variation using different selection agents has been used for crop improvement. Here, rice plants of cv PR113 were selected in vitro on 30, 50 and 70 g L-1 polyethylene glycol 6,000 (PEG). Callus growth, proliferation, calli volume (first and second culture) and plantlet regeneration (third culture) were found to be decreased upto a certain level to acquire tolerance to PEG-induced drought. From the field data, 30 g L-1 PEG lines showed higher vegetative growth (plant height, tiller number, leaf number, shoot weight and root growth) as compared with 50 g L-1 PEG selected somaclone lines under limited irrigation. The yield parameters-panicle length, panicle weight, grains per panicle, 1,000-grain weight, grain yield per plant, harvest index and grain straw ratio were also higher in 30 g L-1 PEG lines as compared with 50 g L-1 PEG lines. The results, therefore indicate that 30 g L-1 PEG selected somaclone lines were more suited than 50 g L-1 PEG selected somaclone lines under stress as compared with WT. The finding suggests that rice cv PR113 somaclones generated on PEG are found to be drought tolerant under field condition with better yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号