首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrostatic interactions between negatively charged membranes and basic peptides/protein domains have been implicated as the driving force for several important processes, often involving membrane aggregation, fusion, or phase separation. Recently, acidic lipids were reported to both catalyze amyloid fiber formation by amyloidogenic proteins/peptides and induce formation of “amyloid-like” fibrils by nonamyloidogenic proteins. This study aims to characterize the structure of the aggregates of a basic protein (lysozyme) and negatively charged membranes (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine 4:1 mixture) at the molecular level, using Förster resonance energy transfer. It is concluded that lysozyme induced formation of a “pinched lamellar” structure, with reduced interbilayer distance in the regions where there is bound protein and increased interbilayer distance (stabilized by hydration repulsion) outside these areas.  相似文献   

2.
The co-solvent 2,2,2-trifluoroethanol (TFE) has been often used to aid formation of secondary structure in solution peptides or alternately as a denaturant within protein folding studies. Hen egg white lysozyme (HEWL) and a synthetic model peptide defining HEWL helix-4 were used as comparative model systems to systematically investigate the effect of increasing TFE concentrations on the structure of proteins and peptides. HEWL was analyzed using NMR, far-UV CD and fluorescence spectroscopy; with correlation of these results towards changes in enzymatic activity and the helix-4 peptide was analysed using NMR. Data illustrates two conflicting modes of interaction: Low TFE concentrations stabilize tertiary structure, observed from an increase in the number of NMR NOE contacts. Higher TFE concentrations denatured HEWL with the loss of lysozyme tertiary structure. The effects of TFE upon secondary structural elements within HEWL are distinct from those observed for the helix-4 peptide. This illustrates a dissimilar interaction of TFE towards both protein and peptide at equivalent TFE concentrations. The concentration that TFE promotes stabilization over denaturation is likely to be protein dependent although the structural action can be extrapolated to other protein systems with implications for the use of TFE in structural stability studies.  相似文献   

3.
Actin exists as a monomer (G-actin) which can be polymerized to filaments) F-actin) that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.  相似文献   

4.
31P-NMR and X-ray diffraction techniques are used to study the comparative ability of myelin basic protein (MBP) vs. other basic proteins to convert hexagonal (HII) phases to stable lamellar (L alpha) structures. Pure dioleoylphosphatidylethanolamine (DOPE) at pH 9 and 7, and mixtures of DOPE/phosphatidylserine (PS) (95:5 and 80:20% w/w) at pH 7 were employed for this investigation. The polymorphic behavior of the lipid suspensions was evaluated in the presence and absence of several basic proteins (MBP, calf thymus histone, lysozyme, melittin) and the cationic polypeptide, polylysine (PL). Each of the proteins and PL was capable of binding the pure DOPE HII phase at pH 9 but with varying morphological consequences, i.e., lamellar stabilization (MBP, histone, PL), formation of new protein-DOPE HII phases (lysozyme) or lipid disordering/vesiculation (melittin). Reduction to pH 7 resulted in the dissociation of protein from DOPE - with the exception of melittin - and the reformation of a pure lipid HII phase. Additions of PS to DOPE at pH 7 facilitated protein binding, but among the proteins examined, only MBP was capable of converting the lipid suspension into a stable multilamellar form. Differences in the lipid morphology produced by each protein are discussed in terms of protein physicochemical characteristics. In addition, a possible relationship between MBP-lipid interactions and the stability of myelin sheath lipid multilayers is inferred from the significant bilayer-stabilizing capacity of MBP.  相似文献   

5.
The addition of solutions of bovine myelin basic protein to suspensions of unilamellar vesicles prepared from whole myelin suspensions results in the rapid equilibrium association of the vesicles into dimers, followed by time-dependent aggregation reactions. Other cationic proteins also induce the dimerization of the vesicles and equilibrium constants for dimer formation are obtained for bovine myelin basic protein, lysozyme, polyhistidine and myelin basic protein from carp, which differs from the bovine protein in that it contains no methylarginine residues. The bovine protein is more efficient at inducing dimer formation than the carp protein by approximately 0.93 kcal/mole; the carp protein is approximately as effective as the other cationic proteins examined. Complete methylation of the bovine MBP by AdoMet:MBP methyltransferase increases the interaction between MBP and the membrane by approximately 0.13 kcal/mole, consistent with the suggestion that a large portion of the free energy difference between the carp and bovine proteins arises from favorable interactions involving the methylarginine residues.  相似文献   

6.
Ethanol is used to precipitate proteins during various processes, including purification and crystallization. To elucidate the mechanism of protein precipitation by alcohol, we have investigated the solubility and structural changes of protein over a wide range of alcohol concentrations. Conformation of hen egg-white lysozyme was changed from native to α-helical rich structure in the presence of ethanol at concentrations above 60%. The solubility of lysozyme was reduced with increasing ethanol concentration, although gel formation at ethanol concentrations between 60% and 75% prevented accurate solubility measurements. SH-modified lysozyme showed largely unfolded structure in water and α-helical structure in the presence of ethanol. More importantly, solubility of the chemically modified lysozyme molecules decreased with increasing ethanol concentration. There is no indication of increased solubility upon unfolding of the lysozyme molecules by ethanol, indicating that any favorable interaction of ethanol with the hydrophobic side chains, if indeed occuring, is offset by the unfavorable interaction of ethanol with the hydrophilic side chains and peptide bonds.  相似文献   

7.
To understand the mechanism of amyloid fibril formation of a protein, we examined wild-type and three mutant human lysozymes containing both amyloidogenic and non-amyloidogenic proteins: I56T (amyloidogenic); EAEA, which has four additional residues (Glu-Ala-Glu-Ala-) at the N-terminus located on a beta-structure; and EAEA-I56T, which is an I56T mutant of EAEA. All formed amyloid-like fibrils through an in the increase contents of alpha-helix with increasing concentration of ethanol. The order of propensity for amyloid-like fibril formation in highly concentrated ethanol solution is EAEA-I56T > EAEA > I56T > wild-type. This order is almost the reverse of the order of conformational stability of these proteins, wild-type > EAEA > I56T > EAEA-I56T. The important views in this work are as follows. (i) Artificially modified proteins formed amyloid fibrils in vitro. This means that amyloid formation is a generic property of polypeptide chains. (ii) The amyloidogenic mutation Ile56 to Thr caused the destabilization and promoted fibril formation in the wild-type and EAEA human lysozymes, indicating that instability facilitates amyloid formation. (iii) The mutant protein EAEA human lysozyme had higher propensity for fibril formation than the amyloidogenic mutant protein, indicating that amyloid formation is controlled not only by stability but also by other factors. In this case, appending polypeptide chains to a beta-structure accelerated amyloid formation.  相似文献   

8.
Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.  相似文献   

9.
SP-BCTERM, a cationic, helical peptide based on the essential lung surfactant protein B (SP-B), retains a significant fraction of the function of the full-length protein. Solid-state 2H- and 31P-NMR were used to examine the effects of SP-BCTERM on mechanically oriented lipid bilayer samples. SP-BCTERM modified the multilayer structure of bilayers composed of POPC, POPG, POPC/POPG, or bovine lipid extract surfactant (BLES), even at relatively low peptide concentrations. The 31P spectra of BLES, which contains ∼1% SP-B, and POPC/POPG with 1% SP-BCTERM, look very similar, supporting a similarity in lipid interactions of SP-BCTERM and its parent protein, full-length SP-B. In the model systems, although the peptide interacted with both the oriented and unoriented fractions of the lipids, it interacted differently with the two fractions, as demonstrated by differences in lipid headgroup structure induced by the peptide. On the other hand, although SP-BCTERM induced similar disruptions in overall bilayer orientation in BLES, there was no evidence of lipid headgroup conformational changes in either the oriented or the unoriented fractions of the BLES samples. Notably, in the model lipid systems the peptide did not induce the formation of small, rapidly tumbling lipid structures, such as micelles, or of hexagonal phases, the observation of which would have provided support for functional mechanisms involving peptide-induced lipid flip-flop or stabilization of curved lipid structures, respectively.  相似文献   

10.
Wang SC  Lee CT 《Biochemistry》2007,46(50):14557-14566
The interaction of a light-responsive surfactant with lysozyme at pH 5.0 has been investigated as a means to control protein structure and enzymatic activity with light illumination. The cationic azobenzene surfactant undergoes a reversible photoisomerization upon exposure to the appropriate wavelength of light, with the visible-light (trans) form being more hydrophobic and, thus, inducing a greater degree of protein unfolding than the UV-light (cis) form. Conformational changes as a function of photoresponsive surfactant concentration and light illumination were measured through shape-reconstruction analysis of small-angle neutron scattering (SANS) data. The SANS-based in vitro structures indicate that lysozyme transitions from a nativelike structure at low surfactant concentration to a partially unfolded conformation at higher surfactant concentrations under visible light illumination, while UV-light illumination causes the protein to refold to a near-native structure. Protein swelling occurs principally away from the active site near the hinge region connecting the alpha and beta domains, leading to an increase in the observed separation distance of the alpha and beta domains in the ensemble SANS measurements, a likely result of enhanced domain motions and increased flexibility within the protein. This swelling of the hinge region is accompanied by an 8-fold increase in enzymatic activity relative to the native state. Both enzyme swelling and superactivity observed under visible light can be reversed to nativelike conditions upon exposure to UV light, leading to complete photoreversible control of the structure and function of lysozyme.  相似文献   

11.
The combination of cationic lipids with cationic peptides and DNA vectors can produce synergistic effects in gene delivery to eukaryotic cells. Binary complexes of cationic lipids with DNA are well-studied whereas little information is available about the structure of the ternary lipid/peptide/DNA (LPD) complexes and mechanisms defining DNA protection and delivery. Here we use synchrotron small angle X-ray scattering and dynamic light scattering zeta-potential measurements to determine structure and the net charge of supramolecular aggregates of complexes in mixtures of plasmid DNA, cationic liposomes formed from DOTAP, plus a linear cationic ε-oligolysine with the pendant α-amino acids Leu-Tyr-Arg (LYR), ε-(LYR)K10. These ternary complexes display multilamellar structures with relatively constant separation between DOTAP bilayers, accommodating a hydrated monolayer of parallel DNA rods. The DNA-DNA distance in the complexes varies as a function of the net positive to negative (lipid+peptide)/DNA charge ratio. An explanation for the observed dependence of DNA-DNA distance on charge ratio was proposed based on general polyelectrolyte properties of non-stoichiometric polycation-DNA mixtures.  相似文献   

12.
Hu HY  Li Q  Cheng HC  Du HN 《Biopolymers》2001,62(1):15-21
Cross beta-sheet structure formation and abnormal aggregation of proteins are thought to be pathological characteristics of some neurodegenerative disorders. To investigate the novel structural transformation and aggregation, the solid-state secondary structures of some proteins and peptides associated in thin films were determined by circular dichroism spectroscopy. Insulin, lysozyme, DsbA protein, luciferase, and ovalbumin peptide fall into one group; they show no or slight structural rearrangement from solution to the solid state. Another group, including bovine serum albumin, ovalbumin, alpha-synuclein, and plasminogen activator inhibitor-1 (PAIRC) peptide, undergo structural transformation with an increase of beta-sheet structure in the solid state. The beta-sheet formation of PAIRC peptide may reflect the structural transformation of the serpin reactive center that is relevant to the inhibitor activity. The beta-sheet structure of alpha-synuclein in the solid state may correspond to the amyloid-like aggregates, which are implicated in the pathogenesis of some neurodegenerative diseases.  相似文献   

13.
We report on highly ordered oblique self-assemblies in ionic complexes of PEGylated triple-tail lipids and cationic polypeptides, as directed by side-chain crystallization, demonstrating also reversible oblique-to-hexagonal order-order transitions upon melting of the side chains. This is achieved in bulk by complexing cationic homopolypeptides, poly-l-lysine (PLys), poly-l-arginine (PArg), and poly-l-histidine (PHis), in stoichiometric amounts with anionic lipids incorporating two hydrophobic alkyl tails and one hydrophilic polyethylene glycol (PEG) tail in a star-shaped A(2)B geometry. Based on Fourier transform infrared spectroscopy (FTIR), the PLys and PArg complexes fold into α-helical conformation. Aiming to periodicities at different length scales, that is, hierarchies, the PEG tails were selected to control the separation of the polypeptide helices in one direction while the alkyl tails determine the distance between the hydrophilic polypeptide/PEG layers, resulting in an oblique arrangement of the helices. We expect that the high overall order, where the self-assembled domains are in 2D registry, is an outcome of a favorable interplay of plasticization due to the hydrophobic and hydrophilic lipid tails combined with the shape persistency of the peptide helices and the crystallization of the lipid alkyl chains. Upon heating the complexes over the melting temperature of the alkyl tails, an order-order transition from oblique to hexagonal columnar morphology was observed. This transition is reversible, that is, the oblique structure with 2D correlation of the helices is fully returned upon cooling, implying that the alkyl tail crystallization guides the structure formation. Also PHis complex forms an oblique self-assembly. However, instead of α-helices, FTIR suggests formation of helical structures lacking intramolecular hydrogen bonds, stabilized by steric crowding of the lipid. The current study exploits competition between the soft and harder domains, which teaches on concepts toward well-defined polypeptide-based materials.  相似文献   

14.
We report a rationale for the formation of amyloid fibrils from globular proteins, and we infer about its possible generality by showing the formation of giant multistranded twisted and helical ribbons from both lysozyme and β-lactoglobulin. We follow the kinetics of the fibrillation under the same conditions of temperature (90 °C) and incubation time (0-30 h) for both proteins, and we assess the structural changes during fibrillation by single-molecule atomic force microscopy (AFM), circular dichroism (CD), and SDS-PAGE. With incubation time, the width of a multistranded fibril increases up to an unprecedented size, with a lateral assembly of as many as 17 protofilaments (173 nm width). In both cases, a progressive unfolding and hydrolysis of the proteins into very short peptide sequences occurs. The molecular weights of peptide fragments, the secondary structure evolution, and the morphology of the final fibrils present striking similarities between lysozyme and β-lactoglobulin. Because of additional analogies to synthetic peptide fibrils, these findings support a universal common fibrillation mechanism in which hydrolyzed fragments play the central role.  相似文献   

15.
Recent experimental studies indicate that oligomeric complexes of misfolded proteins and peptides are the primary agents of cytotoxicity in amyloid-related diseases. Given the prevalence of mixed-polarity interfaces in physiological environments, an understanding of the mechanisms of interactions between amorphous (pre-fibrillar) aggregates and surfaces is important for completing our knowledge of the behaviour of peptide aggregation phenomena. We have employed fully solvated molecular dynamics simulations to study the morphology, interactions and peptide conformations of disordered aggregates of the amyloidogenic NFGAIL (derived from human islet amyloid polypeptide) and non-amyloidogenic AGAIL peptides upon adsorption to vapour–water, decane–water, bilayer and solid–water interfaces. All of the interfaces studied promote elongation and surface-spreading of both peptide aggregates, with the liquid–liquid interface being particularly efficient at altering the gross morphology of disordered aggregates. NFGAIL aggregates are more effective at disrupting lipid bilayers compared to AGAIL. Additionally, the interfaces studied cause greater changes in peptide conformations within the NFGAIL aggregates compared to AGAIL. We propose that simulations may elucidate the capability of interfaces to effect changes in the behaviour of disordered peptide aggregates, which may also serve to provide measures of the intrinsic fibrillogenicity of a given peptide sequence.  相似文献   

16.
Zhang Y  Lu W  Hong M 《Biochemistry》2010,49(45):9770-9782
Defensins are cationic and disulfide-bonded host defense proteins of many animals that target microbial cell membranes. Elucidating the three-dimensional structure, dynamics, and topology of these proteins in phospholipid bilayers is important for understanding their mechanisms of action. Using solid-state nuclear magnetic resonance spectroscopy, we have now determined the conformation, dynamics, oligomeric state, and topology of a human α-defensin, HNP-1, in DMPC/DMPG bilayers. Two-dimensional correlation spectra show that membrane-bound HNP-1 exhibits a conformation similar to that of the water-soluble state, except for the turn connecting strands β2 and β3, whose side chains exhibit immobilization and conformational perturbation upon membrane binding. At high protein/lipid ratios, rapid (1)H spin diffusion from the lipid chains to the protein was observed, indicating that HNP-1 was well inserted into the hydrocarbon core of the bilayer. Arg Cζ-lipid (31)P distances indicate that only one of the four Arg residues forms tight hydrogen-bonded guanidinium-phosphate complexes. The protein is predominantly dimerized at high protein/lipid molar ratios, as shown by (19)F spin diffusion experiments. The presence of a small fraction of monomers and the shallower insertion at lower protein concentrations suggest that HNP-1 adopts concentration-dependent oligomerization and membrane-bound structure. These data strongly support a "dimer pore" topology of HNP-1 in which the polar top of the dimer lines an aqueous pore while the hydrophobic bottom faces the lipid chains. In this structure, R25 lies closest to the membrane surface among the four Arg residues. The pore does not have a high degree of lipid disorder, in contrast to the toroidal pores formed by protegrin-1, a two-stranded β-hairpin antimicrobial peptide. These results provide the first glimpse into the membrane-bound structure and mechanism of action of human α-defensins.  相似文献   

17.
The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.  相似文献   

18.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the (31)P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. (2)H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. (31)P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, (31)P and (2)H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

19.
Desai A  Lee C  Sharma L  Sharma A 《Biochimie》2006,88(10):1435-1445
Cyclodextrins (CDs), in the presence or absence of detergents, have been reported to suppress aggregate formation during the refolding of a number of proteins. A structure-activity relationship study between CD chemistry and refolding of lysozyme was performed and compared to carbonic anhydrase, in order to better understand the mechanism of CD-assisted protein refolding and to identify CDs that could function as good protein folding agents. Among the natural CDs, which have only hydroxyl groups, alpha-CD, with a smaller cavity size was more effective than the oligosaccharide with a larger cavity, gamma-CD. Replacement of the hydroxyls with other functional groups did not improve, but could seriously interfere, with the lysozyme refolding ability of alpha-CD. In case of gamma-CD, substitution of its hydroxyls with other groups either enhanced or diminished its refolding capability towards lysozyme. In general, neutral CDs were better refolding agents than the charged sugars. The presence of anionic substituents like carboxyl and phosphate groups actually promoted aggregate formation and completely abolished the sugar's refolding ability. This effect was more pronounced with lysozyme than with carbonic anhydrase. CDs with cationic functional groups did not show any significant effects on lysozyme refolding. The presence of both anionic and cationic substituents on the same CD molecule was found to partially restore its renaturation ability. Electrophoresis data indicate that CDs, which promoted lysozyme refolding, arrested aggregation at the stage of smaller soluble aggregates. Interestingly, the structure-activity relationship observed with lysozyme was quite similar to that reported for a non-disulfide protein, carbonic anhydrase. These results suggest that the effects of CDs on protein refolding are attributed to their ability to suppress aggregation of proteins. CDs may show properties similar to chaotropic agents, which may help explain their anti-aggregation and protein refolding ability. Besides alpha-CD, a number of other neutral CDs were found to be effective protein folding aids.  相似文献   

20.
Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein–lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号