首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have shown that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding of anandamide (AEA) to type-1 cannabinoid receptors (CB1R), followed by CB1R-dependent signaling via adenylate cyclase and p42/p44 MAPK activity. In the present study, we investigated whether type-2 cannabinoid receptors (CB2R), widely expressed in immune cells, also are modulated by MCD. We show that treatment of human DAUDI leukemia cells with MCD does not affect AEA binding to CB2R, and that receptor activation triggers similar [35S]guanosine-5'-O-(3-thiotriphosphate) binding in MCD-treated and control cells, similar adenylate cyclase and MAPK activity, and similar MAPK-dependent protection against apoptosis. The other AEA-binding receptor transient receptor potential channel vanilloid receptor subunit 1, the AEA synthetase N-acyl-phosphatidylethanolamine-phospholipase D, and the AEA hydrolase fatty acid amide hydrolase were not affected by MCD, whereas the AEA membrane transporter was inhibited (approximately 55%) compared with controls. Furthermore, neither diacylglycerol lipase nor monoacylglycerol lipase, which respectively synthesize and degrade 2-arachidonoylglycerol, were affected by MCD in DAUDI or C6 cells, whereas the transport of 2-arachidonoylglycerol was reduced to approximately 50%. Instead, membrane cholesterol enrichment almost doubled the uptake of AEA and 2-arachidonoylglycerol in both cell types. Finally, transfection experiments with human U937 immune cells, and the use of primary cells expressing CB1R or CB2R, ruled out that the cellular environment could account per se for the different modulation of CB receptor subtypes by MCD. In conclusion, the present data demonstrate that lipid rafts control CB1R, but not CB2R, and endocannabinoid transport in immune and neuronal cells.  相似文献   

2.
In this report we show, by confocal analysis of indirect immunofluorescence, that the type-1 cannabinoid receptor (CB1R), which belongs to the family of G-protein-coupled receptors, is expressed on the plasma membrane in human breast cancer MDA-MB-231 cells. However, a substantial proportion of the receptor is present in lysosomes. We found that CB1R is associated with cholesterol- and sphyngolipid-enriched membrane domains (rafts). Cholesterol depletion by methyl-beta-cyclodextrin (MCD) treatment strongly reduces the flotation of the protein on the raft-fractions (DRM) of sucrose density gradients suggesting that CB1 raft-association is cholesterol dependent. Interestingly binding of the agonist, anandamide (AEA) also impairs DRM-association of the receptor suggesting that the membrane distribution of the receptor is dependent on rafts and is possibly regulated by the agonist binding. Indeed MCD completely blocked the clustering of CB1R at the plasma membrane. On the contrary the lysosomal localization of CB1R was impaired by this treatment only after AEA binding.  相似文献   

3.
Several G protein-coupled receptors function within lipid rafts plasma membrane microdomains, which may be important in limiting signal transduction. Here we show that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding efficiency (i.e. the ratio between maximum binding and dissociation constant) of type-1 cannabinoid receptors (CB1R), which belong to the rhodopsin family of G protein-coupled receptors. In parallel, activation of CB1R by the endogenous agonist anandamide (AEA) leads to approximately 3-fold higher [35S]GTPgammaS binding in MCD-treated cells than in controls, and CB1R-dependent signaling via adenylate cyclase, and p42/p44 MAPK is almost doubled by MCD. Unlike CB1R, the other AEA-binding receptor TRPV1, the AEA synthetase NAPE-PLD, and the AEA hydrolase FAAH are not modulated by MCD, whereas the activity of the AEA membrane transporter (AMT) is reduced to approximately 50% of the controls. We also show that MCD reduces dose-dependently AEA-induced apoptosis in C6 cells but not in human CHP100 neuroblastoma cells, which mirror the endocannabinoid system of C6 cells but are devoid of CB1R. MCD reduces also cytochrome c release from mitochondria of C6 cells, and this effect is CB1R-dependent and partly mediated by activation of p42/p44 MAPK. Altogether, the present data suggest that lipid rafts control CB1R binding and signaling, and that CB1R activation underlies the protective effect of MCD against apoptosis.  相似文献   

4.
We analyzed the properties of a G protein-coupled receptor localized in cholesterol-poor vs. cholesterol-rich microdomains of the plasma membrane. For this purpose, the human oxytocin receptor, which is very sensitive against alterations of the membrane cholesterol level, was stably expressed in HEK293 cells. To calculate the total number of receptors independent of ligand binding studies, the oxytocin receptor was tagged with an enhanced green fluorescent protein (EGFP) which did not change the functional properties of the receptor. Only 1% of the oxytocin receptors were present in cholesterol-rich detergent-insoluble domains. In contrast, employing a detergent-free fractionation scheme that preserves the functional activity of the receptor, we detected 10-15% of the receptors in cholesterol-rich low-density membranes and therein the high-affinity state receptors were twofold enriched. In cholesterol-poor vs. cholesterol-rich domains, high-affinity oxytocin receptors behaved similar with respect to their agonist binding kinetics and GTP sensitivity. However, high-affinity oxytocin receptors localized in cholesterol-rich low-density membranes showed a markedly enhanced (t (1/2) approximately threefold) stability at 37 degrees C as compared with the oxytocin receptors localized in the cholesterol-poor high-density membranes. Addition of cholesterol to the high-density membranes fully protected the oxytocin receptors against loss of function. The importance of cholesterol to stabilize the oxytocin receptor was supported in experiments with solubilized receptors. Cholesterol markedly delayed the inactivation of oxytocin receptors solubilized with Chapso. In conclusion, the data of this report suggest that functional properties of heptahelical receptor proteins could differ in dependence of their localization in different membrane microdomains.  相似文献   

5.
Elphick MR 《Gene》2007,399(1):65-71
A gene encoding an ortholog of vertebrate CB(1)/CB(2) cannabinoid receptors was recently identified in the urochordate Ciona intestinalis (CiCBR; [Elphick, M.R., Satou, Y., Satoh, N., 2003. The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene 302, 95-101.]). Here a cannabinoid receptor ortholog (BfCBR) has been identified in the cephalochordate Branchiostoma floridae. BfCBR is encoded by a single exon and is 410 amino acid residue protein that shares 28% sequence identity with CiCBR and 23% sequence identity with human CB(1) and human CB(2). The discovery of BfCBR and CiCBR and the absence of cannabinoid receptor orthologs in non-chordate invertebrates indicate that CB(1)/CB(2)-like cannabinoid receptors originated in an invertebrate chordate ancestor of urochordates, cephalochordates and vertebrates. Furthermore, analysis of the relationship of BfCBR and CiCBR with vertebrate CB(1) and CB(2) receptors indicates that the gene/genome duplication that gave rise to CB(1) and CB(2) receptors occurred in the vertebrate lineage. Identification of BfCBR, in addition to CiCBR, paves the way for comparative analysis of the expression and functions of these proteins in Branchiostoma and Ciona, respectively, providing an insight into the ancestral functions of cannabinoid receptors in invertebrate chordates prior to the emergence of CB(1) and CB(2) receptors in vertebrates.  相似文献   

6.
The effect of agents disrupting cholesterol-rich microdomains of the cell membrane was studied on the chemoattractant receptor (FPR and FRPL1) coupled effector responses of promyelocytic PLB-985 cells. Both methyl-beta-cyclodextrin (MbetaCD) and filipin III inhibited exocytosis of primary granules and O(2)(.-) production induced by stimulation of either chemotactic receptor. Alteration of calcium homeostasis of MbetaCD-treated cells does not account for the impairment of the effector responses. Disruption of microfilaments by cytochalasin B (CB) partially reverses the inhibitory effect of cholesterol depletion. Our results provide functional support for the involvement of cholesterol-rich membrane domains in the signaling of chemotactic receptors and call the attention to the possible role of microfilaments in the organization of lipid microdomains.  相似文献   

7.
Caveolin scaffolding region and cholesterol-rich domains in membranes   总被引:4,自引:0,他引:4  
A protein that constitutes a good marker for a type of cholesterol-rich domain in biological membranes is caveolin. A segment of this protein has a sequence that corresponds to a cholesterol recognition/interaction amino acid consensus (CRAC) motif; this motif has been suggested to cause the incorporation of proteins into cholesterol-rich domains. We have studied the interaction of two peptides containing the CRAC motif of caveolin-1 by differential scanning calorimetry, fluorescence, circular dichroism and magic angle spinning NMR. These peptides promote the segregation of cholesterol into domains from mixtures of the sterol with phosphatidylcholine, as shown by depletion of cholesterol from a portion of the membrane and enrichment of cholesterol in another domain. Cholesterol passes its solubility limit in the cholesterol-rich domain, resulting in the formation of cholesterol crystallites, suggesting that not all of the cholesterol recruited to this domain is bound to the peptide. NMR studies show that the peptides insert somewhat more deeply into membranes when cholesterol is present, but their strongest interaction takes place with the interfacial region of the membrane. We conclude that the peptides we studied containing CRAC sequences are more effective in promoting the formation of cholesterol-rich domains than are shorter peptides of this region of caveolin, which although they contain several aromatic amino acids, they have no CRAC motif. The presence or absence of a CRAC motif, however, is not a sufficient criterion to determine the extent to which a protein will promote the segregation of cholesterol in membranes.  相似文献   

8.
Several cannabinoid receptors have been detected in many organisms. The best known are CB1, mainly expressed in the central nervous system and CB2 which is almost exclusively expressed in the periphery. Here we report the molecular characterization of two duplicate CB2-like cannabinoid receptors from zebrafish (Danio rerio) (zebrafish Cb2a and zebrafish Cb2b). The amino acid sequences of these receptors present 56% identity with Takifugu rubripes CB2 sequence and 39% with human CB2 sequence and conserve some specific key residues for cannabinoid receptor function. Both duplicate receptors are expressed in peripheral tissues (gills, heart, intestine and muscle), immune tissue (spleen) and also in the central nervous system. Using in situ hybridization techniques zebrafish Cb2 mRNA expression was observed for the first time in the adenohypophysial cells of the rostral pars distalis and proximal pars distalis of the pituitary gland. Given the importance of the existence of duplication of genes in teleosts, the combined analysis of these two new cannabinoid receptors opens a new exciting door to investigate and understand cannabinoid function throughout evolution.  相似文献   

9.
Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.  相似文献   

10.
The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with beta-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.  相似文献   

11.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

12.
Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.  相似文献   

13.
An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.  相似文献   

14.
Nebane NM  Kellie B  Song ZH 《FEBS letters》2006,580(22):5392-5398
Charge-neutralizing mutation D6.30N of the human cannabinoid receptor subtype 1 (CB1) and cannabinoid receptor subtype 2 (CB2) cannabinoid receptors was made to test two hypotheses: (1) D6.30 may be crucial for the functions of CB1 and CB2 receptors. (2) D6.30 may participate in an ionic lock with R3.50 that keeps the receptors in an inactive conformation. Specific ligand binding and ligand-induced inhibition of forskolin-stimulated cAMP accumulation were observed with human embryonic kidney epithelial cell line (HEK293) cells expressing wild-type CB1 and CB2, as well as CB1D6.30N and CB2D6.30N mutant receptors. There was however a decrease in maximum response of the mutant receptors compared to their wild-type counterparts, suggesting that D6.30 is essential for full activation of both CB1 and CB2 receptors. Both CB1D6.30N and CB2D6.30N demonstrated a level of constitutive activity no greater than that of their wild-type counterparts, indicating that either D6.30 does not participate in a salt bridge with R3.50, or the salt bridge is not critical for keeping cannabinoid receptors in the inactive conformation.  相似文献   

15.
Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.  相似文献   

16.
G-protein coupled receptors may mediate their effects on neuronal growth and differentiation through activation of extracellular signal-regulated kinases 1/2 (ERK1/2), often elicited by transactivation of growth factor receptor tyrosine kinases. This elaborate signaling process includes inducible formation and trafficking of multiprotein signaling complexes and is facilitated by pre-ordained membrane microdomains, in particular lipid rafts. In this study, we have uncovered novel signaling interactions of cannabinoid receptors with fibroblast growth factor receptors, which depended on lipid rafts and led to ERK1/2 activation in primary neurons derived from chick embryo telencephalon. More specifically, the cannabinoid 1 receptor (CB1R) agonist methanandamide induced tyrosine phosphorylation and transactivation of fibroblast growth factor receptor (FGFR)1 via Src and Fyn, which drove an amplification wave in ERK1/2 activation. Transactivation of FGFR1 was accompanied by the formation of a protein kinase C ε-dependent multiprotein complex that included CB1R, Fyn, Src, and FGFR1. Recruitment of molecules increased with time of exposure to methanandamide, suggesting that in addition to signaling it also served trafficking of receptors. Upon agonist stimulation we also detected a rapid incorporation of CB1R, as well as activated Src and Fyn, and FGFR1 in lipid rafts. Most importantly, lipid raft integrity was a pre-requisite for CB1R-dependent complex formation. Our data provide evidence that lipid rafts may organize CB1 receptor proximal signaling events, namely activation of Src and Fyn, and transactivation of FGFR1 towards activation of ERK1/2 and induction of neuronal differentiation.  相似文献   

17.
Several G protein-associated receptors and synaptic proteins function within lipid rafts, which are subdomains of the plasma membranes that contain high concentrations of cholesterol. In this study we addressed the possible role of lipid rafts in the control of endocannabinoid system in striatal slices. Disruption of lipid rafts following cholesterol depletion with methyl-β-cyclodestrin (MCD) failed to affect synthesis and degradation of anandamide, while it caused a marked increase in the synthesis and concentration of 2-arachidonoylglycerol (2-AG), as well as in the binding activity of cannabinoid CB1 receptors. Surprisingly, endogenous 2-AG-mediated control of GABA transmission was not potentiated by MCD treatment and, in contrast, neither basal nor 3,5-Dihydroxyphenylglycine-stimulated 2-AG altered GABA synapses in cholesterol-depleted slices. Synaptic response to the cannabinoid CB1 receptor agonist HU210 was however intact in MCD-treated slices, indicating that reduced sensitivity of cannabinoid CB1 receptors does not explain why endogenous 2-AG is ineffective in inhibiting striatal GABA transmission after cholesterol depletion. Confocal microscopy analysis suggested that disruption of raft integrity by MCD might uncouple metabotropic glutamate 5-CB1 receptor interaction by altering the correct localization of both receptors in striatal neuron elements. In conclusion, our data indicate that disruption of raft integrity causes a complex alteration of the endocannabinoid signalling in the striatum.  相似文献   

18.
Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.  相似文献   

19.
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated from rat brain and canine gut as an endogenous cannabinoid receptor ligand (Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., Waku, K., 1995. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97; Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., Compton, D.R., Pertwee, R.G., Giffin, G., Bayewitch, M., Brag, J., Vogel, Z., 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90). 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Recently, we found that 2-AG induces Ca(2+) transients in NG108-15 cells, which express the CB1 receptor, and in HL-60 cells, which express the CB2 receptor, through a cannabinoid receptor- and Gi/Go-dependent mechanism. Based on the results of structure-activity relationship experiments, we concluded that 2-AG but not anandamide is the natural ligand for both the CB1 and the CB2 receptors and both receptors are primarily 2-AG receptors. Evidences are gradually accumulating that 2-AG is a physiologically essential molecule, although further detailed studies appear to be necessary to determine relative importance of 2-AG and anandamide in various animal tissues. In this review, we described mainly our previous and current experimental results, as well as those of others, concerning the tissue levels, bioactions and metabolism of 2-AG.  相似文献   

20.
Previous studies have shown that cholesterol in atherosclerotic plaques is present in both intracellular and extracellular forms. In the current study, we investigated a mechanism for extracellular cholesterol accumulation and examined the capacity of this pool of cholesterol to be removed by cholesterol acceptors, a step in reverse cholesterol transport. Human monocyte-derived macrophages differentiated with macrophage-colony stimulating factor were incubated with acetylated LDL to allow cholesterol enrichment and processing. These macrophages were subsequently labeled with a monoclonal antibody that specifically detects ordered cholesterol arrays, revealing the presence of unesterified cholesterol-rich microdomains on the cell surfaces and in the extracellular matrix. Similar unesterified cholesterol-rich microdomains were present in human atherosclerotic plaques. Actin microfilaments functioned in microdomain deposition or maintenance, and Src family kinases regulated transfer of these microdomains from the cell surface onto the extracellular matrix. Mediators of reverse cholesterol transport, apolipoprotein A-I (apoA-I), and HDL were capable of removing these extracellular un-esterified cholesterol-rich microdomains. However, apoA-I removed the microdomains only when macrophages were present. ApoA-I removal of microdomains was blocked by glyburide and inhibitor of ATP-binding cassette transporter A1 (ABCA1) function. In summary, cultures of cholesterol-enriched human monocyte-derived macrophages generate extracellular unesterified cholesterol-rich microdomains, which can subsequently be removed by cholesterol acceptors and therefore potentially function in reverse cholesterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号