首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide and water vapour exchanges for single attachedleaves of the temperate C4 grass Spartina townsendii were measuredunder controlled environment conditions in an open gas-exchangesystem. The responses of net photosynthesis, stomatal resistance,and residual resistance to leaf temperature and photon fluxdensity are described. The light and temperature responses ofnet photosynthesis in S. townsendii are compared to informationon these responses in both temperate C3 grasses and sub-tropicalC4 grasses. Adaptation of photosynthesis in this C4 speciesto a cool temperate climate is indicated both by the light andtemperature responses of net photo-synthesis. Unlike the C4grasses examined previously, significant rates of net photosynthesiscan be detected at leaf temperatures below 10?C. Rates of netphotosynthesis equal or exceed those reported for temperateC3 grasses at all of the temperature (5–40?C) and photonflax density (13–2500µmol m–2 s–1) conditionsexamined. Maximum rates of net photosynthesis in S. townsendiiare almost double those reported for C3 herbage grasses. Unliketemperate C3 grasses, the major limitation to net photosynthesisat low leaf temperatures (10?C and below) is the stomatal resistance,showing that the low residual resistance characteristic of C4species is maintained in S. townsendii even at low leaf temperatures.  相似文献   

2.
BUNCE  JAMES A. 《Annals of botany》1990,65(6):637-642
Dark carbon dioxide efflux rates of recently fully expandedleaves and whole plants of Amaranthus hypochondriacus L., Glycinemax (L.) Merr., and Lycopersicon esculentum Mill. grown in controlledenvironments at 35 and 70 Pa carbon dioxide pressure were measuredat 35 and 70 Pa carbon dioxide pressure. Harvest data and whole-plant24-h carbon dioxide exchange were used to determine relativegrowth rates, net assimilation rates, leaf area ratios, andthe ratio of respiration to photosynthesis under the growthconditions. Biomass at a given time after planting was greaterat the higher carbon dioxide pressure in G. max and L. esculentum,but not the C4 species, A. hypochondriacus. Relative growthrates for the same range of masses were not different betweencarbon dioxide treatments in the two C3 species, because highernet assimilation rates at the higher carbon dioxide pressurewere offset by lower leaf area ratios. Whole plant carbon dioxideefflux rates per unit of mass were lower in plants grown andmeasured at the higher carbon dioxide pressure in both G. maxand L. esculentum, and were also smaller in relation to daytimenet carbon dioxide influx. Short-term responses of respirationrate to carbon dioxide pressure were found in all species, withcarbon dioxide efflux rates of leaves and whole plants lowerwhen measured at higher carbon dioxide pressure in almost allcases. Amaranthus hypochondriacus L., Glycine max L. Merr., Lycopersicon esculentum Mill., soybean, tomato, carbon dioxide, respiration, growth  相似文献   

3.
When grown under conditions of low relative humidity, the C3–C4intermediate Panicum milioides, as well as the C3 grasses Triticumaestivum and Poa pratense, exhibited 13C values which were upto 2–7%o less negative than the 13C values of the correspondingplants grown at high relative humidity. At both humidity levels,there was no evidence of a substantial contribution of phosphoenolpyruvatecarboxylase to carbon gain in Panicum milioides  相似文献   

4.
We report new information on silica deposition in 15 plant species,including nine grasses, two sedges and four composites. Thesilica depositional patterns found in seven of the grass speciesindicate that they are C4 plants. However the festucoid grassCortaderia selloana is a C3 plant with long leaf trichomes andoval silica structures in the leaves. In contrast the panicoidC4 grasses Chasmathium latifolium, Chasmathium sessiflorum,Imperata cylindrica, Panicum repens, Panicum commutatum andSetaria magna, all produce dumb-bell-shaped silica structuresin the leaves. The chloridoid grasses Spartina patens and Spartinacynosuroides have saddle-shaped structures and no dumb-bellor oval shaped ones. The sedges Rhynchospora plumosa and Scirpuscyperinus were found to have oval phytoliths and may be C3 plants.Our examination of these and other grasses strongly suggeststhat C4 grasses tend to produce the same type of silica cells.Grasses and sedges with C3 type photosynthesis tend to produceoval silica structures. The composite Grindelia squarrosa andsunflowers Helianthus angustifolia, Helianthus atrorubens andHelianthus tuberosus absorb relatively small amounts of siliconand larger amounts of calcium, where both elements deposit inleaf trichomes. We found no clear indicator for the C3 sunflowersor C4 types in the Asteraceae. Helianthus tuberosus leaves havemany trichomes on the adaxial surface. These trichomes havea higher concentration of silica than the surrounding leaf surface.Helianthus tuberosus leaves had much higher ash and silica contentsthan those of Helianthus angustifolia and Helianthus atrorubens.The composite Grindelia squarrosa has a usual deposition ofsilica in the basal cells around the guard cells. Silica depositionoften reflects the surface features of a leaf. An exceptionis Scripus cyperinus where the silica structures are deep inthe tissue and do not reflect the surface configurations. Theinforescence of Setaria magna had a 14.64 silica content. Thetufts of white, silky hairs characteristic of Imperata cylindricainflorescence have no silica. C3 and C4 plants, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

5.
Panicum hians and Panicum milioides were found to have characteristicsintermediate to those of C3 and C4 species with respect to CO2compensation point, percentage inhibition of photosynthesisby O2 at various O2/CO2 solubility ratios, and water use efficiency.C4 species have a higher carboxylation efficiency than eitherthe intermediate or C3 species. During photosynthesis, evenunder 2.5% O2, C4 species have a higher affinity for intercellularCO2 (Km 1.6 µM) apparently due to the initial carboxylationthrough PEP carboxylase. Under low O2 the intermediate and C3species had a similar affinity for intercellular CO2 duringphotosynthesis (Km 5–7 µM) consistent with carboxylationof atmospheric CO2 through RuDP carboxylase. There were considerablevariation in photosynthesis/unit leaf area at saturating CO2levels in the species examined which in part is due to differencesin RuDP carboxylase /unit leaf area. The highest rates of photosynthesis/unitleaf area under CO2-saturating conditions were with the C3 specieswhich had a correspondingly high level of RuDP carboxylase/unitleaf area. Possibilities for the greater efficiency of P. hiansand P. milioides in comparison to C3 species in utilizing lowlevels of CO2 in the presence of atmospheric O2 are discussed. 1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and theUniversity of Wisconsin Research Committee with funds from theWisconsin Alumni Research Foundation. (Received June 25, 1977; )  相似文献   

6.
Australia's tropical grasslands are dominated by C4grasses,characterized by their unique biochemistry and anatomy. Twonaturalized C4grasses (Panicum coloratum and Cenchrus ciliaris)were used to investigate whether high CO2partial pressure [p(CO2)] influences photosynthetic nitrogen use efficiency andplant nitrogen use efficiency (PNUE and NUE respectively). Plantswere grown for 30 d with four levels of N at p(CO2) of 38 or86 Pa. PNUE was calculated from leaf CO2assimilation rates (A)and leaf N concentrations, and NUE from total leaf N contentand plant dry mass. At each p(CO2), PNUE and NUE were greaterfor C. ciliaris than for P. coloratum due to higher A and drymass combined with lower leaf N concentrations. Elevatedp (CO2)increased PNUE of C. ciliaris only. This effect was due to lowerleaf N concentrations (area basis). At high p(CO2), NUE of C.ciliaris was also greater. This resulted from a 1.6-fold stimulationof dry mass by high p(CO2). Although dry mass of P. coloratumwas increased 1.2-fold by elevated p(CO2), its NUE was unaffected.Leaf transpiration rates were halved at elevated p(CO2), andwe suggest that this factor plays a major role in the growthresponse of C4grasses to high p(CO2). Copyright 2001 Annalsof Botany Company Panicum coloratum, Cenchrus ciliaris, nitrogen use efficiency, elevated CO2, leaf N concentration, growth, photosynthesis  相似文献   

7.
Silica (SiO2.nH2O) is deposited in large quantities in the shootsystems of grasses. In the leaf epidermal system, it is incorporatedinto the cell wall matrix, primarily of outer epidermal walls,and within the lumena of some types of epidermal cells. This biogenic silica can be stained specifically with methylred, crystal violet lactone, and silver amine chromate. At theultrastructural level, the silica in lumens of silica cells,bulliform cells and long epidermal cells is made up of rodsabout 2.5 µm in length and 0.4µm in width. Ultimateparticles in the rods range from 1 to 2 nm in diameter. In contrast,silica in the cell wall matrix of trichomes and outer wallsof long epidermal cells is not rod-shaped, but rather, formsroughly spherical masses. Detailed analyses are presented on the frequencies of occurrenceof the different types of epidermal cells that contain silicain the leaves of representative C3 and C4 grasses. The C4 grasseshave higher frequencies of bulliform cell clusters, silica cells,and long epidermal cells, whereas the C3 grasses have higherfrequencies of trichomes. No correlation was found in the frequencyof occurrence of silica bodies in bulliform cells for C3 grassesas compared with C4 grasses. Of all the grasses examined, Coix,Oryza, and Eleusine had the highest densities of such bodies,and some taxa had no silica bodies apparent in their bulliformcells. The idea that silica bodies in bulliform cells and silica cellsmight act as "windows’ and trichomes might function as‘light pipes’ to facilitate light transmission throughthe epidermal system to photosynthetic mesophyll tissue belowwas tested. The experimental data presented do not support eitherof these hypotheses. C2 and C4 grasses, biogenic silica, light pipes, window hypothesis, silica staining, silica ultrastructure  相似文献   

8.
This study investigated how CO2and temperature affect dry weight(d.wt) accumulation, total nonstructural carbohydrate (TNC)concentration, and partitioning of C and N among organs of twoimportant grasses of the shortgrass steppe,Pascopyrum smithiiRydb. (C3) andBouteloua gracilis(H.B.K.) Lag. ex Steud. (C4).Treatment combinations comprised two temperatures (20 and 35°C)at two concentrations of CO2(380 and 750 µmol mol-1),and two additional temperatures of 25 and 30°C at 750 µmolmol-1CO2. Plants were maintained under favourable nutrient andsoil moisture and harvested following 21, 35, and 49d of treatment.CO2-induced growth enhancements were greatest at temperaturesconsidered favourable for growth of these grasses. Comparedto growth at 380 µmol mol-1CO2, final d.wt of CO2-enrichedP.smithiiincreased 84% at 20°C, but only 4% at 35°C. Finald.wt ofB. graciliswas unaffected by CO2at 20°C, but wasenhanced by 28% at 35°C. Root:shoot ratios remained relativelyconstant across CO2levels, but increased inP. smithiiwith reductionin temperature. These partitioning results were adequately explainedby the theory of balanced root and shoot activity. Favourablegrowth temperatures led to CO2-induced accumulations of TNCin leaves of both species, and in stems ofP. smithii, whichgenerally reflected responses of above-ground d.wt partitioningto CO2. However, CO2-induced decreases in plant tissue N concentrationswere more evident forP. smithii. Roots of CO2-enrichedP. smithiihadgreater total N content at 20°C, an allocation of N below-groundthat may be an especially important adaptation for C3plants.Tissue N contents ofB. graciliswere unaffected by CO2. Resultssuggest CO2enrichment may lead to reduced N requirements forgrowth in C3plants and lower shoot N concentration, especiallyat favourable growth temperatures. Acclimation to CO2; blue grama; Bouteloua gracilis ; carbohydrate; climate change; global change; grass; growth; growth temperature optima; nitrogen; N uptake; Pascopyrum smithii; western wheatgrass  相似文献   

9.
The kinetic properties of ribulose 1,5-bisphosphate carboxylase(RuBPC) appear to have been modified during evolution of photosynthesisto adjust to changes in substrate availability. C4 plants areconsidered to have a higher concentration of CO2 available toRuBPC than C3plants. In this study, the Km(CO2 and catalyticcapacity (kcat) of RuBPC and the ratio of RuBPC protein to totalsoluble protein from several Flaveria species, including C3,C3-C4 intermediate, and C4 species, were determined. The C3and intermediate species had similar Km(CO2) values while theC4 species on average had higher Km(CO2) values. The mean ratioof Kcat/Km for species of each group was similar, supportingthe hypothesis that changes in Km and Kcat, are linked. Theallocation of total soluble protein to RuBPC was lowest in theC4 Flaveria species, intermediate in the C3-C4 species, andhighest in the C3 species. The results suggest that during evolutionof C4 photosynthesis adjustments may occur in the quantity ofRuBPC prior to changes in its kinetic properties. (Received January 4, 1989; Accepted April 11, 1989)  相似文献   

10.
Ash and silica contents and depositional patterns were determinedfor different tissues of 11 plants growing in the southeasternand central parts of the USA. Silica content was high in theleaves, sheaths and inflorescences of the grasses studied, especiallyso in the inflorescence of the C3 grass, Stipa comata Trise.and Rupr. The ash content was especially high in leaves of Polymniauvedalia L., which are also high in calcium. Calcium depositionwas largely in trichomes and in veins of the leaf. Energy-dispersiveX-ray analysis showed that the distribution of the element siliconis closely related to certain epidermal structures such as ridges,cell walls, rows of irregularly-shaped structures lying lenghthwisealong the leaf, dumb-bell shaped structures and trichomes. Thesestructures also correspond to the phytoliths left behind afterdecay of the plant. The C3 grasses differed from the C4 in thatthey showed oval structures and produced correspondingly ovalphytoliths. Silicified trichomes (particularly in the C3 grasses)and long, narrow, silica fibres were common in the inflorescencesof the grasses studied. These sharp particles could be irritatingto oesophageal and other tissues. Similar fibres in other grasseshave been implicated in certain cancers. High silicificationof the inflorescence structures might afford protection forthe seed, as reported for other grasses. C3 and C4 grasses, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

11.
Upland grasslands are a major component of natural vegetationwithin the UK. Such grasslands support slow growing relativelystable plant communities. The response of native montane grassspecies to elevated atmospheric carbon dioxide concentrationshas received little attention to date. Of such studies, mosthave only focused on short-term (days to weeks) responses, oftenunder favourable controlled environment conditions. In thisstudy Agrostis caplllaris L.5, Festuca vivipara L. and Poa alpinaL. were grown under semi-natural conditions in outdoor open-topchambers at either ambient (340µmol mol–1) or elevated(680µmol mol–1) concentrations of atmospheric carbondioxide (CO2 for periods from 79 to 189 d, with a nutrient availabilitysimilar to that of montane Agrostis-Fescue grassland in Snowdonia,N. Wales. Whole plant dry weight was increased for A. capillarisand P. alpina, but decreased for F. vivipara, at elevated CO2.Major components of relative growth rate (RGR) contributingto this change at elevated CO2 were transient changes in specificleaf area (SLA) and leaf area ratio (LAR). Despite changes ingrowth rate at 680 µmol mol–1 CO2, partitioningof dry weight between shoot and root in plants of A. capillarisand P. alpina was unaltered. There was a significant decreasein shoot relative to root growth at elevated CO2 in F. viviparawhich also showed marked discoloration of the leaves and increasedsenescence of the foliage. Key words: Allometry, growth analysis, elevated CO2, grasses  相似文献   

12.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

13.
Bunce  James A. 《Annals of botany》2001,87(4):463-468
Predicting responses of plant and global carbon balance to theincreasing concentration of carbon dioxide in the atmosphererequires an understanding of the response of plant respirationto carbon dioxide concentration ([CO2]). Direct effects of thecarbon dioxide concentration at which rates of respiration ofplant tissue are measured are quite variable and their effectsremain controversial. One possible source of variation in responsivenessis the energy status of the tissue, which could influence thecontrol coefficients of enzymes, such as cytochrome-c oxidase,whose activity is sensitive to [CO2]. In this study we comparedresponses of respiration rate to [CO2] over the range of 60to 1000 µmol mol-1in fully expanded leaves of four C3andfour C4herbaceous species. Responses were measured near themiddle of the normal 10 h dark period, and also after another24 h of darkness. On average, rates of respiration were reducedabout 70% by the prolonged dark period, and leaf dry mass perunit area decreased about 30%. In all species studied, the relativedecrease in respiration rate with increasing [CO2] was largerafter prolonged darkness. In the C3species, rates measured at1000 µmol mol-1CO2averaged 0.89 of those measured at 60µmol mol-1in the middle of the normal dark period, and0.70-times when measured after prolonged darkness. In the C4species,rates measured at 1000 µmol mol-1CO2averaged 0.79 of thoseat 60 µmol mol-1CO2in the middle of the normal dark period,and 0.51-times when measured after prolonged darkness. In threeof the C3species and one of the C4species, the decrease in theabsolute respiration rate between 60 and 1000 µmol mol-1CO2wasessentially the same in the middle of the normal night periodand after prolonged darkness. In the other species, the decreasein the absolute rate of respiration with increase in [CO2] wassubstantially less after prolonged darkness than in the middleof the normal night period. These results indicated that increasingthe [CO2] at the time of measurement decreased respiration inall species examined, and that this effect was relatively largerin tissues in which the respiration rate was substrate-limited.The larger relative effect of [CO2] on respiration in tissuesafter prolonged darkness is evidence against a controlling roleof cytochrome-c oxidase in the direct effects of [CO2] on respiration.Copyright 2001 Annals of Botany Company Carbon dioxide, respiration, Abutilon theophrasti(L.), Amaranthus retroflexus(L.),Amaranthus hypochondriacus (L.), Datura stramonium(L.), Helianthus annuus(L.), Solanum melongena(L.), Sorghum bicolor(L. Moench), Zea mays  相似文献   

14.
Leaf Interveinal Distances Corresponding to Anatomical Types in Grasses   总被引:5,自引:0,他引:5  
Considerable variation in the interveinal distances in leaveswas observed in both C3 and C4 grass species. In C4 species,interveinal distances of the Mestome Sheath type (89.0 µm)were smaller than those of the Parenchyma Sheath type (140.0µm). In contrast, non-Kranz type (C3 species) had thelargest interveinal distances of all the anatomical types. Variationin the interveinal distances of leaves of grasses is discussedin relation to photosynthetic ability and water use. (Received August 7, 1984; Accepted January 16, 1985)  相似文献   

15.
The capacity for C4 photosynthesis in Panicum milioides, a specieshaving reduced levels of photorespiration, was investigatedby examining the activity of certain key enzymes of the C4 pathwayand by pulse-chase experiments with 14CO2. The ATP$P1 dependentactivity of pyruvate,P1 dikinase in the species was extremelylow (0.14–0.18 µmol mg chlorophyll–1 min–1).Low activity of the enzyme was also found in Panicum decipiensand Panicum hians (related species with reduced photorespiration)and in Panicum laxum (a C3 species). The antibody to pyruvate,P1dikinase caused about 70% inhibition of the ATP$P1 dependentactivity of the enzyme in P. milioides. The activity of NAD-malicenzyme and NADP-malic enzyme in P. milioides was equally low(approximately 0.1–0.2 µmol mg chlorophyll–1min–1) and similar to the activity in P. decipiens, P.hians and P. laxum. Photosynthetic pulse-chase experiments underatmospheric conditions showed a typical C3-like pattern of carbonassimilation including the labelling of glycine and serine asexpected during photorespiration. During the pulse with 14CO2only about 1% of the labelled products appeared in malate and2–3% in aspartate. During a chase in atmospheric levelsof CO2 for up to 6 min there was a slight increase in labellingin the C4 acids. The amount of label in carbon 4 of aspartatedid not change during the chase, indicating little or no turnoverof the C4 acid via decarboxylation. The results indicate thatunder atmospheric conditions P. milioides assimilates carbondirectly through the C3 pathway. Photorespiration as indicatedby the CO2 compensation point may be repressed in the speciesby a more efficient recycling of photorespired CO2. (Received June 8, 1982; Accepted July 22, 1982)  相似文献   

16.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

17.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

18.
The maximum catalytic activities of several photorespiratoryand photosynthetic enzymes were determined in leaf extractsof three C3–C4 intermediates (Alternanthera ficoides,A. tenella and Parthenium hysterophorus) and were compared tothose of C3 (A. sessiles, Pisum sativum) and C4 (A. pungens,Zea mays and Amaranthus hypochondriacus) species. The activitylevels of key photorespiratory enzymes, glycolate oxidase, catalase,NADH-hydroxypyruvate reductase and glycerate kinase were less(28 to 35% reduced) in intermediates than those of typical C3species. Similarly, the activities of photorespiratory aminotransferasesin the C3–C4 intermediates were also partially reduced(23 to 37% reduction). The activities of phosphoenolpyruvatecarboxylase (PEPC), pyruvate, orthophosphate dikinase and NAD-malicenzyme were higher (2 to 7 times) in leaf extracts of the intermediatesthan those of C3 species. But the ratios of PEPC/rubisco inthe C3–C4 intermediates were more like C3 than C4 species.We draw attention to the partial reduction in enzyme activityof photorespiratory metabolism, which could be an importantfactor for restriction of photorespiration in the C3–C4intermediate species, in addition to enzyme compartmentationand/or operation of a ‘C4-like’ cycle Key words: C3–C4 intermediates, C4 pathway, enzyme profile, glycolate metabolism, photorespiration, photosynthesis  相似文献   

19.
Haloxylon aphyllum and H. persicum of Chenopodiaceae are dominantplants in the continental deserts of the Asian Irano-Turanianregion. The photosynthetic organs, assimilating shoots and leaf-likecotyledons of these two species were studied to characterizetheir photosynthetic types. 13C/12C isotope ratios, the cellularanatomy of as similating organs, primary photosynthetic products,and activities of carbon metabolism enzymes, RUBP carboxylase,PEP carboxylase, malic enzymes, and aspartate aminotransferase,indicate different pathways of CO2 fixation in the photosyntheticorgans. Assimilating shoots had attributes of the C4 photosynthesisentirely, while cotyledons lack Kranz-anatomy and incorporatedCO2 via C3 photosynthesis. Cotyledons and seeds had lower  相似文献   

20.
Dynamic Model of Leaf Photosynthesis with Acclimation to Light and Nitrogen   总被引:16,自引:3,他引:16  
A simple model of photosynthesis in a mature C3leaf is described,based on a non-rectangular hyperbola: the model allows the high-lightasymptote of that equation (Pmax) to respond dynamically tolight and nitrogen. This causes the leaf light response equationto acclimate continuously to the current conditions of lightand N nutrition, which can vary greatly within a crop canopy,and through a growing season, with important consequences forgross production. Predictions are presented for the dynamicsof acclimation, acclimated and non-acclimated photosyntheticrates are compared, and the dependence of leaf properties onlight and N availability is explored. There is good correspondenceof predictions with experimental results at the leaf level.The model also provides a mechanism for a down regulation ofphotosynthesis in response to increased carbon dioxide concentrations,whose magnitude will depend on conditions, particularly of nitrogennutrition.Copyright 1998 Annals of Botany Company Leaf, photosynthesis, hyperbola, model, C3, acclimation, light, nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号