首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D J Patel  L Shapiro  D Hare 《Biopolymers》1986,25(4):693-706
The base and sugar protons of the d(G-G-T-A-T-A-C-C) duplex have been assigned from two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements in D2O solution at 25°C. The nucleic acid protons have been assigned from NOEs between protons on adjacent bases on the same and partner strands, as well as from NOEs between the base protons and their own and 5′-flanking H1′, H2′, H2″, H3′, and H4′ sugar protons. These assignments are confirmed from coupling constant and NOE connectivities within the sugar protons of a given residue. Several of these NOEs exhibit directionality and demonstrate that the d(G-G-T-A-T-A-C-C) duplex is a right-handed helix. The relative magnitude of the NOEs between the base protons and the sugar H2′ protons of its own and 5′-flanking sugar demonstrate that the TATA segment of the d(G-G-T-A-T-A-C-C) duplex adopts a B-DNA type helix geometry in solution, in contrast to the previous observation of a A-type helix for the same octanucleotide duplex in the crystalline state.  相似文献   

2.
Precision in the determination of the 3D structures of proteins by NMR depends on obtaining an adequate number of NOE restraints. Ambiguity in the assignment of NOE cross peaks between aromatic and other protons is an impediment to high quality structure determination. Two pulse sequences, 3D Haro-NOESY-CH3NH and 3D Caro-NOESY-CH3NH, based on a modification of a technique for simultaneous detection of 13C-1H (of CH3) and 15N-1H correlations in one measurement, are proposed in the present work. These 3D experiments, which are optimized for resolution in the 13C and 15N dimensions, provide NOE information between aromatic protons and methyl or amide protons. CH2 moieties are filtered out and the CH groups in aromatic rings are selected, allowing their NOE cross peaks to be unambiguously assigned. Unambiguous NOEs connecting aromatic and methyl or amide protons will provide important restraints for protein structure calculations.  相似文献   

3.
DNA dodecamers have been designed with two cytosines on each end and intervening A and T stretches, such that the oligomers have fully complementary A:T base pairs when aligned in the parallel orientation. Spectroscopic (UV, CD and IR), NMR and molecular dynamics studies have shown that oligomers having the sequences d(CCATAATTTACC) and d(CCTATTAAATCC) form a parallel-stranded duplex when dissolved at 1:1 stoichiometry in aqueous solution. This is due to the C:C+ clamps on either end and extensive mismatches in the antiparallel orientation. The structure is stable at neutral and acidic pH. At higher temperatures, the duplex melts into single strands in a highly cooperative fashion. All adenine, cytosine and thymine nucleotides adopt the anti conformation with respect to the glycosidic bond. The A:T base pairs form reverse Watson–Crick base pairs. The duplex shows base stacking and NOEs between the base protons T(H6)/A(H8) and the sugar protons (H1′/H2′/H2″) of the preceding nucleotide, as has been observed in antiparallel duplexes. However, no NOEs are observed between base protons H2/H6/H8 of sequential nucleotides, though such NOEs are observed between T(CH3) and A(H8). A three-dimensional structure of the parallel-stranded duplex at atomic resolution has been obtained using molecular dynamics simulations under NMR constraints. The simulated structures have torsional angles very similar to those found in B-DNA duplexes, but the base stacking and helicoid parameters are significantly different.  相似文献   

4.
Abstract

ID NOE 1H NMR spectroscopy at 500 MHz was employed to examine the structure of poly(dA)·poly(dT) in solution. NOE experiments were conducted as a function of presaturation pulse length (50, 30, 20 and 10 msec) and.power (19 and 20 db) to distinguish the primary NOEs from spin diffusion. The 10 msec NOE experiments took 49 hrs and over 55,000 scans for each case and the difference spectra were almost free from diffusion.

The spin diffused NOE difference spectra as well as difference NOE spectra in 90% H2O + 10% D2O in which TNH3 was presaturated enabled to make a complete assignment of the base and sugar protons. It is shown that poly(dA) ·poly(dT) melts in a fashion in which single stranded bubbles are formed with increasing temperature.

Extremely strong primary NOEs were observed at H2′/H2″ when AH8 and TH6 were presaturated. The observed NOEs at AH2′ and that AH2″ were very similar as were the NOEs at TH2′ and TH2″. The observed NOEs at AH2′ and AH2″when AH8 was presaturated were very similar to those observed at TH2′ and TH2″ when TH6 was presaturated. In addition, presaturation of H1′ of A and T residues resulted in similar NOEs at AH2′/H2″ and TH2′/H2″ region and these NOEs at H2′ and H2″ were distinctly asymmetric as expected in a C2′-endo sugar pucker. There was not a trace of NOE at AH8 and TH6 when AH3′ and TH3′ were presaturated indicating that C3′-endo, × = 30–40° conformation is not valid for this DNA. From these NOE data, chemical shift shielding calculations and stereochemistry based computer modellings, we conclude that poly(dA)·poly(dT) in solution adopts a right- handed B-DNA duplex in which both dA and dT strands are conformationally equivalent with C2′-endo sugar pucker and a glycosyl torsion, ×, of ?73°, the remaining backbone torsion angles being φ′ = 221°, ω′ = 212°, ω = 310°, φ = 149°, ψ = 42°, ψ′ = 139°. The experimental data are in total disagreement with the heteronomous DNA model of Arnott et. al. proposed for the fibrous state. (Arnott, S., Chandrasekaran, R., Hall, I.H., and Puigjaner, L.C., Nucl. Acid Res. 11, 4141, 1983).  相似文献   

5.
The Lys residues in the 75-residue Ca2+-binding protein calbindin D9k were reductively methylated with13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca2+- and apo-forms of the protein, the13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. ThepKa values of the individual Lys residues in Ca2+-calbindin D9k and apo-calbindin D9k were obtained by combiningpH titration experiments and (1H,13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca2+- and apo-forms of calbindin D9k has a uniquepKa value. The LyspKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca2+-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of thepKa values of the Lys residues.  相似文献   

6.
An isotope labeling scheme is described in which specific protonation of methine and methyl protons of leucine and valine is obtained on a 15N/13C labeled background with uniform deuteration of all other non-exchangeable protons. The presence of a protonated methine group has little effect on the favorable relaxation properties of the methyl protons of Leu and Val. This labeling scheme permits the rotameric state of leucine side-chains to be readily determined by simple inspection of the pattern of Hγ(i)–HN(i) and Hγ(i)–HN(i+1) NOEs in a 3D 15N-separated NOE spectrum free of complications arising from spectral overlap and spin-diffusion. In addition, one-bond residual dipolar couplings for the methine 13C–1H bond vectors of Leu and Val can be accurately determined from an intensity J-modulated constant-time HCCH-COSY experiment and used to accurately orient the side-chains of Leu and Val. Incorporation of these data into structure refinement improves the accuracy with which the conformations of Leu and Val side-chains can be established. This is important to ensure optimal packing both within the protein core and at intermolecular interfaces. The impact of the method on protein structure determination is illustrated by application to enzyme IIAChitobiose, a 34 kDa homotrimeric phosphotransferase protein.  相似文献   

7.
The Lys residues in the 75-residue Ca2+-binding protein calbindin D9k were reductively methylated with13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca2+- and apo-forms of the protein, the13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. ThepKa values of the individual Lys residues in Ca2+-calbindin D9k and apo-calbindin D9k were obtained by combiningpH titration experiments and (1H,13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca2+- and apo-forms of calbindin D9k has a uniquepKa value. The LyspKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca2+-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of thepKa values of the Lys residues.  相似文献   

8.
The major unfolded form of ribonuclease A is known to show well-populated structural intermediates transiently during folding at 0°–10°C. We describe here how the exchange reaction between D2O and peptide NH protons can be used to trap folding intermediates. The protons protected from exchange during folding can be characterized by 1H-nmr after folding is complete. The feasibility of using 1H-nmr to resolve a set of protected peptide protons is demonstrated by using a specially prepared sample of ribonuclease S in D2O in which only the peptide protons of residues 7–14 are in the 1H-form. All eight of these protected peptide protons are H-bonded. Resonance assignments made on isolated peptides containing these residues have been used to identify the protected protons. Other sets of protected protons trapped in the 1H-form can also be isolated by differential exchange, using either ribonuclease A or S. Earlier model compound studies have indicated that H-bonded folding intermediates should be unstable in water unless stabilized by additional interactions. Nevertheless, peptides derived from ribonuclease A that contain residues 3–13 do show partial helix formation in water at low temperatures. We discuss the possibility that specific interactions between side chains can stabilize short α-helixes by nucleating the helix, and that specific interactions may also define the helix boundaries at early stages in folding.  相似文献   

9.
NMR structural determination of large multi-domain proteins is a challenging task due to significant spectral overlap with a particular difficulty in unambiguous identification of domain–domain interactions. Segmental labeling is a NMR strategy that allows for isotopically labeling one domain and leaves the other domain unlabeled. This significantly simplifies spectral overlaps and allows for quick identification of domain–domain interaction. Here, a novel segmental labeling strategy is presented for detection of inter-domain NOEs. To identify domain–domain interactions in human apolipoprotein E (apoE), a multi-domain, 299-residues α-helical protein, on-column expressed protein ligation was utilized to generate a segmental-labeled apoE samples in which the N-terminal (NT-) domain was 2H(99%)/15N-labeled whereas the C-terminal (CT-) domain was either 15N- or 15N/13C-labeled. 3-D 15N-edited NOESY spectra of these segmental-labeled apoE samples allow for direct observation of the inter-domain NOEs between the backbone amide protons of the NT-domain and the aliphatic protons of the CT-domain. This straightforward approach permits unambiguous identification of 78 inter-domain NOEs, enabling accurate definition of the relative positions of both the NT- and the CT-domains and determination of the NMR structure of apoE.  相似文献   

10.
A new NOE strategy is presented that allows the simultaneous observation of intermolecular and intramolecular NOEs between an unlabeled ligand and a 13C,15N-labeled protein. The method uses an adiabatic 13C inversion pulse optimized to an empirically observed relationship between 1 J CH and carbon chemical shift to selectively invert the protein protons (attached to 13C). Two NOESY data sets are recorded where the intermolecular and intramolecular NOESY cross peaks have either equal or opposite signs, respectively. Addition and subtraction yield two NOESY spectra which contain either NOEs within the labeled protein (or unlabeled ligand) or along the binding interface. The method is demonstrated with an application to the B12-binding subunit of Glutamate Mutase from Clostridium tetanomorphum complexed with the B12-nucleotide loop moiety of the natural cofactor adenosylcobalamin (Coenzyme B12).  相似文献   

11.
This paper describes a [15N,1H]/[13C,1H]-TROSY experiment for the simultaneous acquisition of the heteronuclear chemical shift correlations of backbone amide 15N–1H groups, side chain 15N–1H2 groups and aromatic 13C–1H groups in otherwise highly deuterated proteins. The 15N–1H and 13C–1H correlations are extracted from two subspectra of the same data set, thus preventing possible spectral overlap of aromatic and amide protons in the 1H dimension. The side-chain 15N–1H2 groups, which are suppressed in conventional [15N,1H)-TROSY, are observed with high sensitivity in the 15N–1H subspectrum. [15N,1H]/[13C,1H]-TROSY was used as the heteronuclear correlation block in a 3D [1H,1H]-NOESY-[15N,1H]/[13C,1H]-TROSY experiment with the membrane protein OmpA reconstituted in detergent micelles of molecular weight 80000 Da, which enabled the detection of numerous NOEs between backbone amide protons and both aromatic protons and side chain 15N–1H2 groups.  相似文献   

12.
D J Patel  L Shapiro 《Biopolymers》1986,25(4):707-727
We have recorded one-dimensional exchangeable proton and two-dimensional nonexchangeable proton nmr spectra on the complex of netropsin with the self-complementary d(G-G-T-A-T-A-C-C) duplex in aqueous solution between 25° and 35°C. The antibiotic amide, pyrrole, and methylene protons, and the nucleic acid base and sugar H1′, H2′, H2″, and H3′ protons, have been assigned from an analysis of the two-dimensional nuclear Overhauser effect (NOESY) spectra of the complex. We observe intermolecular NOEs between the antibiotic concave face amide, pyrrole, and CH2 resonances, and the adenosine H2 and sugar H1′ protons of base-pairs T3·A6 and A4·T5 in the central TATA core of the d(G1-G2-T3-A4-T5-A6-C7-C8) duplex. We present a molecular model outlining these seven antibiotic-DNA contacts for the complex in solution. The observed line-broadening of several base and sugar protons at the TATA minor groove netropsin binding site in the complex at 35°C are interpreted in terms of intermediate exchange between two orientations of bound netropsin on the duplex.  相似文献   

13.
The 1H-NMR spectra of the oligosaccharide derived from monosialoganglioside GM1 (GM1 = β-d-galactosyl-(1–3)-β-d-N-acetylgalactosaminyl-(1–4)-[α-N-acetylneuraminyl-(2–3)]-β-d-galactosyl-( 1–4)-β-d-glucosylceramide) (GM1OS) and its reduced form (GM1OS-R) have been obtained at 500 MHz in D2O. Through the combined use of one-dimensional and homonuclear two-dimensional spin-echo J-correlated (2D SECSY) spectra of GM1OS-R, the assignments for the ring protons of GM1OS are made. Data on chemical shifts and coupling constants of GM1OS including the α-linked neuraminic acid protons, in aqueous solution, are tabulated. Due to the very small coupling constants (<2 Hz) and the closeness in chemical shifts (<0.04 ppm) for the pair of correlated peaks in the two-dimensional spectrum, the information on the connectivities of the H5 ring protons of the neutral sugar residues is missing. Second-order coupling also blurs this information. Data are compared with those obtained for ganglioside GM1 in dimethyl sulfoxide (DMSO;the actual composition therein was 97% DMSO-d6 and 3% D2O) by T.A.W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu (1983, Biochemistry22, 2676). While the heterogeneity of chemical shifts for the H5, H6a, and H6b protons diminishes in D2O, that for A-9a and A-9b remains. The latter suggests an intraneuraminic acid conformation involving the glycerol side chain unaffected by the solvent. Moreover, the chemical shifts of the III-1, III-2, and A-4 protons (and perhaps the II-4, IV-2, and A-8 protons) in D2O exhibit unusual upfield shifts compared with those in DMSO. This indicates that the intramolecular interactions between GalNAc residue III and neuraminic acid present in DMSO are weakened in D2O. The effect of temperature on the conformation is also examined and appears to be minimal (<0.02 ppm) in the range 22–50 °C.  相似文献   

14.
Nuclear Overhauser effect (NOE) studies of the symmetrical cystine peptides (Formula: see text) (n = 1-3) in dimethylsulfoxide, have resulted in the simultaneous observation of both positive and negative NOEs. Positive NOEs are observed on the Trp C2H and C4H protons of the indole ring upon irradiation of Trp C alpha H and C beta H2 resonances in the peptides where n = 1 and 2. Negative NOEs are observed between backbone NH and C alpha H protons. The magnitudes of the observed NOEs are sensitive to changes in molecular size and solvent viscosity. The results demonstrate that NOEs may be a useful probe of sidechain segmental motion in oligopeptides.  相似文献   

15.
Abstract

Proton magnetic resonance techniques were used to study the conformation of the synthetic tubulin fragment Ac-tubulin (430–441) amide in H20 and 80% CD3OH/20% D20 solutions, using water suppression techniques. Proton assignments are based on two-dimensional COSY experiments combined with one-dimensional spin decoupling.

A comparison of the NH proton shifts between the two solvents, namely ?(CD3OH/H20-H2O) shows a small solvent effect for the Lys1 to Val6 region of the molecule, whereas for Gly7 to Glu12 the solvent effect is much larger. The smaller effects in the region of Lys1 to Val6 may be due to some hydrogen bonding as these protons are shielded from the solvent These conclusions are in agreement with the circular dichroism results in 80% methano1/20% water where the a helix is present to the extent of 30%, whereas the peptide is completely unstructured in water with some aggregation.

The temperature dependence of the NH proton shifts was also carried out. In water these shifts are of the order of7-9 × 10?3 ppm/K indicating that most of the protons are not involved in hydrogen bonding. In CD30H/H20, these values range from about 4–6 × 10?3 ppm/K, which are compatible with the presence of hydrogen bonds.

Finally, binding studies were carried out between the tubulin peptide and the undecapeptide neurotransmitter substance P. The largest shifts are for the Tyr3 NH proton of the tubulin fragment, whereas for substance P it is for the Lys3, Gin5 and Leu10 NH protons, indicating a change in conformation of both peptides on interaction.  相似文献   

16.
Summary The 1H, 13C and 15N NMR resonances of serine protease PB92 have been assigned using 3D tripleresonance NMR techniques. With a molecular weight of 27 kDa (269 residues) this protein is one of the largest monomeric proteins assigned so far. The side-chain assignments were based mainly on 3D H(C)CH and 3D (H)CCH COSY and TOCSY experiments. The set of assignments encompasses all backbone carbonyl and CHn carbons, all amide (NH and NH2) nitrogens and 99.2% of the amide and CHn protons. The secondary structure and general topology appear to be identical to those found in the crystal structure of serine protease PB92 [Van der Laan et al. (1992) Protein Eng., 5, 405–411], as judged by chemical shift deviations from random coil values, NH exchange data and analysis of NOEs between backbone NH groups.Abbreviations 2D/3D/4D two-/three-/four-dimensional - HSQC heteronuclear single-quantum coherence - HMQC heteronuclear multiple-quantum coherence - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - NOE nuclear Overhauser enhancement (connectivity) - NOESY 2D NOE spectroscopy Experiment nomenclature (H(C)CH, etc.) follows the conventions used elsewhere [e.g. Ikura et al. (1990) Biochemistry, 29, 4659–4667].  相似文献   

17.
The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors.  相似文献   

18.
Unambiguous detection and assignment of intermolecular NOEs are essential for structure determination of protein complexes by NMR. Such information has traditionally been obtained with 3-D half-filtered experiments, where scalar coupling-based purging of intramolecular signals allows for selective detection of intermolecular NOEs. However, due to the large variation of 1JHC scalar couplings and limited chemical shift dispersion in the indirect proton dimension, it is difficult to obtain reliable and complete assignments of interfacial NOEs. Here, we demonstrate a strategy that combines selective labeling and high-resolution 4-D NOE spectroscopy with sparse sampling for reliable identification and assignment of intermolecular NOEs. Spectral subtraction of component-labeled complexes from a uniformly-labeled protein complex yields an “omit” spectrum containing positive intermolecular NOEs with little signal degeneracy. Such a strategy can be broadly applied to unbiased detection, assignment and presentation of intermolecular NOEs of protein complexes.  相似文献   

19.
G E Ellis  K J Packer 《Biopolymers》1976,15(5):813-832
The nuclear magnetic spin-lattice and transverse relaxation processes for the 1H and 2D nuclei in purified elastin (ligamentum nuchae), exchanged and hydrated with excess D2O, have been studied in the temperature range 276°–340°K. The 2D relaxation results clearly show the presence of D2O (1) external to the bulk elastin sample, (2) in spaces within the bulk elastin, and (3) as an integral part of the protein on a molecular level. It is shown from these measurements that the protein on a molecular level. It is shown from these measurements that the water content of the protein itself changes from ~0.8 g D2O/g dry elastin at ~280°K to ~0.2 g D2O/g dry elastin at ~335°K, a decrease of 400%. The D2O content of the interfiber spaces decreases by less than 20% over the same temperature range. This fact throws considerable doubt on the validity of the values of β, the thermal expansion coefficient of elastin, used by other workers in discussion of the elastic mechanism in elastin. The elastin proton transverse relaxation shows the presence of three regions in elastin having different degrees of molecular mobility. These are assigned to protons associated with the crosslinks, a fairly mobile, hydrophobic, and low-water-content region, and a more mobile higher water-content region. The temperature variation of the relative proportions of these three regions is explained in terms of a hypothetical temperature-composition phase diagram in which the two mobile regions are represented as two partially miscible phases with different negative temperature coefficients of ‘solubility’ in water. The implications of these observations for current views of the nature of elastin are assessed. It is concluded that the spin-relaxation results are consistent with a multiphase structural model for elastin. An approximate sorption isotherm for the water/elastin system is reported and shows the relatively weak nature of the water/elastin interaction.  相似文献   

20.
The 1H NMR chemical shifts and NOEs of hydroxy protons in Lewis X trisaccharide, β-d-Galp-(1 → 4)[α-l-Fucp-(1 → 3)]-β-d-GlcpNAc, and Lewis Y tetrasaccharide, α-l-Fucp-(1 → 2)-β-d-Galp-(1 → 4)[α-l-Fucp-(1 → 3)]-β-d-GlcpNAc, were obtained for 85% H2O/15% (CD3)2CO solutions. The OH-4 signal of Galp in Lewis X and OH-3, OH-4 signals of Galp, and OH-2 signal of Fucp linked to Galp in Lewis Y had chemical shifts which indicate reduced hydration due to their proximity to the hydrophobic face of the Fucp unit linked to GlcpNAc. The inter-residue NOEs involving the exchangeable NH and OH protons confirmed the stacking interaction between the Fucp linked to the GlcpNAc and the Galp residues in Lewis X and Lewis Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号