首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Respiring Pseudomonas spp. in milk were quantified within 6 h by fluorescence in situ hybridization (FISH) with vital staining. FISH with an oligonucleotide probe based on 16S rRNA sequences was used for the specific detection of Pseudomonas spp. at the single cell level. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to estimate bacterial respiratory activity. The numbers of respiring Pseudomonas cells as determined by FISH with CTC staining (CTC-FISH) were almost the same or higher than the numbers of CFU as determined by the conventional culture method.  相似文献   

2.
3.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a method that is widely used to detect and quantify microorganisms in environmental samples and medical specimens by fluorescence microscopy. Difficulties with FISH arise if the rRNA content of the probe target organisms is low, causing dim fluorescence signals that are not detectable against the background fluorescence. This limitation is ameliorated by technical modifications such as catalyzed reporter deposition (CARD)-FISH, but the minimal numbers of rRNA copies needed to obtain a visible signal of a microbial cell after FISH or CARD-FISH have not been determined previously. In this study, a novel competitive FISH approach was developed and used to determine, based on a thermodynamic model of probe competition, the numbers of 16S rRNA copies per cell required to detect bacteria by FISH and CARD-FISH with oligonucleotide probes in mixed pure cultures and in activated sludge. The detection limits of conventional FISH with Cy3-labeled probe EUB338-I were found to be 370 ± 45 16S rRNA molecules per cell for Escherichia coli hybridized on glass microscope slides and 1,400 ± 170 16S rRNA copies per E. coli cell in activated sludge. For CARD-FISH the values ranged from 8.9 ± 1.5 to 14 ± 2 and from 36 ± 6 to 54 ± 7 16S rRNA molecules per cell, respectively, indicating that the sensitivity of CARD-FISH was 26- to 41-fold higher than that of conventional FISH. These results suggest that optimized FISH protocols using oligonucleotide probes could be suitable for more recent applications of FISH (for example, to detect mRNA in situ in microbial cells).  相似文献   

4.
Respiring Pseudomonas spp. in milk were quantified within 6 h by fluorescence in situ hybridization (FISH) with vital staining. FISH with an oligonucleotide probe based on 16S rRNA sequences was used for the specific detection of Pseudomonas spp. at the single cell level. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to estimate bacterial respiratory activity. The numbers of respiring Pseudomonas cells as determined by FISH with CTC staining (CTC-FISH) were almost the same or higher than the numbers of CFU as determined by the conventional culture method.  相似文献   

5.
M Boye  T Ahl    S Molin 《Applied microbiology》1995,61(4):1384-1390
Sequence analysis of domains 3 and 4 of 23S rRNA from Pseudomonas fluorescens Ag1 was carried out to allow the design of a strain-specific rRNA oligonucleotide probe targeting this strain. The specificity of the probe, Ps-Ag1, was assessed by dot blot analysis and whole-cell hybridization, and it was found to be specific for P. fluorescens Ag1. The correlation between the ribosomal content of P. fluorescens Ag1 and growth rate was determined during balanced growth conditions with generation times ranging from 1.2 to 31.8 h. Hybridization of the rRNA-targeting probes combined with charged coupled device-enhanced microscopy was used to determine the rRNA content. The total RNA content per cell was determined by staining with acridine orange and charged coupled device-enhanced microscopy. After 2 h under carbon starvation conditions, the rRNA content per cell decreased to 45% of the content of an exponentially growing cell. After 1 day of carbon starvation, the rRNA content had decreased to 20%. When cells were grown at different temperatures, it was found that the rRNA content per cell was only dependent on the substrate in the temperature range from 5 to 30 degrees C. P. fluorescens Ag1 was used in a mesocosm release experiment. The strain could be detected by use of the oligonucleotide probe targeting rRNA for 8 days in the water column and for 10 days on solid surfaces. The standard curve correlating growth rate with rRNA content was used to estimate the physiological activity of P. fluorescens Ag1 in the mesocosm experiment.  相似文献   

6.
Fluorescence in situ hybridization (FISH) using rRNA targeted oligonucleotide probes is a standard method for identification of microorganisms in environmental samples. Apart from its value as a phylogenetic marker ribosomal RNA has always been the favoured target molecule for FISH because of its abundance in all cells, whereas plasmids and DNA were regarded as unsuitable targets because of their low copy number. Here we present an improved FISH technique, which is based on polynucleotide probes. It goes beyond the detection of high copy intracellular nucleic acids such as rRNA (up to 10(4)-10(5) copies per cell) and allows for the first time the in situ detection of individual genes or gene fragments on plasmids (10(1)-10(3) copies per cell) and chromosomal DNA (<10 copies per cell) in a single cell. Using E. coli as model organism we were able to detect in situ cells harbouring the antibiotic resistance gene beta lactamase on high, medium and low copy plasmids as well as the chromosomal encoded housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, we detected the prepilin peptidase gene xpsO in the plant pathogen Xanthomonas campestris in situ. Because of the characteristic hybridization signal obtained with this method--a halo-like, ring-shaped concentration of fluorescence in the cell periphery--we coined the term RING-FISH (recognition of individual genes) to differentiate it from conventional FISH.  相似文献   

7.
A method is presented for fluorescence in situ hybridization (FISH) of 16S rRNA gene clones targeting in vivo transcribed plasmid inserts (Clone-FISH). Several different cloning approaches and treatments to generate target-rRNA in the clones were compared. Highest signal intensities of Clone-FISH were obtained using plasmids with a T7 RNA polymerase promoter and host cells with an IPTG-inducible T7 RNA polymerase. Combined IPTG-induction and chloramphenicol treatment of those clones resulted in FISH signals up to 2.8-fold higher than signals of FISH with probe EUB338 to cells of Escherichia coli. Probe dissociation curves for three oligonucleotide probes were compared for reference cells containing native (FISH) or cloned (Clone-FISH) target sequences. Melting behaviour and calculated T(d) values were virtually identical for clones and cells, providing a format to use 16S rRNA gene clones instead of pure cultures for probe validation and optimization of hybridization conditions. The optimized Clone-FISH protocol was also used to screen an environmental clone library for insert sequences of interest. In this application format, 13 out of 82 clones examined were identified to contain sulphate-reducing bacterial rRNA genes. In summary, Clone-FISH is a simple and fast technique, compatible with a wide variety of cloning vectors and hosts, that should have general utility for probe validation and screening of clone libraries.  相似文献   

8.
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using (32)P radiolabels, probe specificity was characterized by hybridization dissociation temperature (T(d)) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined T(d)s. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris.  相似文献   

9.
AIMS: The aim of this study was to develop a specific and rapid method to identify and quantify relevant bacterial populations in mixed biomass by spectrofluorometric quantification (SQ) of whole cells hybridized with fluorescently labelled oligonucleotide probes targeting mature 16S ribosomal RNA (rRNA). Probe targeting the precursor of rRNA synthesis was also employed because it was being suggested as more indicative of the activity state of the micro-organisms. METHODS AND RESULTS: Original fluorescence in situ hybridization protocol was modified to be applied to liquid samples and the fluorescence emission from the Cy3-labelled cells was measured by spectrofluorometry. The method was calibrated on an exponentially growing cell suspension of Acinetobacter johnsonii and was successfully applied to generate kinetic data. No substantial difference in the estimated maximum specific growth rate (mu(max)) values was found between the SQ method and the classical method, using absorbance at 420 nm (6.2 d(-1)). The preliminary validation tests showed their direct applicability to target enriched cultures. CONCLUSIONS: This study demonstrated the validity of the SQ method to easily quantify the concentration and to determine the growth rate of specific micro-organisms present in mixed cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed method can be directly utilized for quantification and kinetic characterization of microbial enrichments. It has the advantage of being easily applicable using simple, inexpensive equipment suitable for routine analysis.  相似文献   

10.
An important microorganism of acid mine drainage (AMD) and bioleaching environments is Acidithiobacillus ferrooxidans which oxidizes ferrous iron and generates ferric iron, an oxidant. Most investigations to understand microbial aspects of sulfide mineral dissolution have focused on understanding physiological, metabolic, and genetic characteristics of A. ferrooxidans. In this study, a 16S rRNA oligonucleotide probe designated S-S-T.ferr-0584-a-A-18, and labeled at the 5'-end with indocarbocyanine dye (CY3), was used in a fluorescent in situ hybridization (FISH) procedure on pure cultures of nine isolates of A. ferrooxidans. These isolates were recovered from acid mine drainage and mining environments. The probe was also used to detect cells of A. ferrooxidans, recovered from AMD samples, growing on FeTSB and FeSo solid media in a FISH procedure. In addition, the presence of cells of A. ferrooxidans in an environmental water sample from an AMD site in Copper Cliff, Ontario, Canada was analyzed using the FISH technique. Probe specificity was first confirmed with A. ferrooxidans ATCC 19859 (positive control) and Acidithiobacillus thiooxidans ATCC 19377, Acidiphilium acidophilum ATCC 27807, and Lactobacillus plantarum ATCC 8014 (negative controls). Positive and negative control cells were also used to determine optimal stringency conditions for hybridizations with the probe. Cells of the nine isolates of A. ferrooxidans stained positive, although the fluorescent signal varied in intensity from isolate to isolate. Colonies of A. ferrooxidans from the environmental water sample of the AMD site were recovered only on FeTSB solid medium after 22 days of incubation. The probe was able to detect cells of A. ferrooxidans in a FISH procedure. However, no cells of A. ferrooxidans were detected in the AMD water sample without cultivation. Thus, probe S-S-T.ferr-0584-a-A-18 hybridized effectively with cells of A. ferrooxidans recovered from pure cultures but failed to directly detect cells of A. ferrooxidans in the AMD site.  相似文献   

11.
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.  相似文献   

12.
The distribution of mitochondria during conjugation of the ciliated protozoan Tetrahymena thermophila was surveyed using a mitochondrial stain and fluorescence in situ hybridization (FISH). When the mitochondria-specific stain, Mito-Tracker, was used, the majority of mitochondria were detected in the cortex; their distribution was not changed during conjugation. On the other hand, FISH using mitochondrial large subunit (LSU) rRNA as a probe showed an unusual distribution of signals during conjugation. Unexpectedly, the signals were detected throughout the cytoplasm of conjugating cells. These signals were not observed in pre-mating cells and in exconjugants. The cytosolic localization of mitochondrial rRNA was supported by northern blot analysis using post-mitochondrial RNA fraction at the later stages of conjugation. These observations suggest selective mitochondrial breakdown or transport of LSU rRNA into cytosol. The biological significance of the conjugation-specific appearance of the cytosolic mitochondrial rRNA is discussed.  相似文献   

13.
When BHK-21/C13 cells growing exponentially in 10% serum are transferred to a medium containing only 0.25% serum, cell growth is decreased. After initial changes in RNA synthesis and degradation, protein content of the cultures reaches a plateau and eventually DNA synthesis is arrested. rRNA is relatively stable in exponentially growing cells. Immediately after 'step-down' rRNA degradation commences, but poly(A)-containing RNA does not appear to be degraded any faster than in control cells. Reutilization of RNA precursors has been independently measured and amounts to less than 1%/h for rRNA, insufficient to influence the conclusion that rRNA degradation begins almost immediately after 'step-down'. The degree of reutilization of uridine is much greater for poly(A)-containing RNA than for poly(A)-free RNA.  相似文献   

14.
A fluorescence in situ hybridization (FISH) technique based on binding of a rhodamine-labelled oligonucleotide probe to 16S rRNA was used to estimate the numbers of ribosome-rich bacteria in soil samples. Such bacteria, which have high cellular rRNA contents, were assumed to be active (and growing) in the soil. Hybridization to an rRNA probe, EUB338, for the domain Bacteria was performed with a soil slurry, and this was followed by collection of the bacteria by membrane filtration (pore size, 0.2 micrometer). A nonsense probe, NONEUB338 (which has a nucleotide sequence complementary to the nucleotide sequence of probe EUB338), was used as a control for nonspecific staining. Counting and size classification into groups of small, medium, and large bacteria were performed by fluorescence microscopy. To compensate for a difference in the relative staining intensities of the probes and for binding by the rhodamine part of the probe, control experiments in which excess unlabelled probe was added were performed. This resulted in lower counts with EUB338 but not with NONEUB338, indicating that nonspecific staining was due to binding of rhodamine to the bacteria. A value of 4.8 x 10(8) active bacteria per g of dry soil was obtained for bulk soil incubated for 2 days with 0.3% glucose. In comparison, a value of 3.8 x 10(8) active bacteria per g of dry soil was obtained for soil which had been air dried and subsequently rewetted. In both soils, the majority (68 to 77%) of actively growing bacteria were members of the smallest size class (cell width, 0.25 to 0.5 micrometer), but the active (and growing) bacteria still represented only approximately 5% of the total bacterial population determined by DAPI (4', 6-diamidino-2-phenylindole) staining. The FISH technique in which slurry hybridization is used holds great promise for use with phylogenetic probes and for automatic counting of soil bacteria.  相似文献   

15.
Traditionally fluorescence in situ hybridization (FISH) has been performed with labeled DNA oligonucleotide probes. Here we present for the first time a high affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting thermotolerant Campylobacter spp. using FISH. Thermotolerant Campylobacter spp, including the species Campylobacter coli, Campylobacter jejuni and Campylobacter lari, are important food and water borne pathogens. The designed PNA probe (CJE195) bound with higher affinity to a previously reported low affinity site on the 16S rRNA than the corresponding DNA probe. PNA also overcame the problem of the lack of affinity due to the location of the binding site and the variation of the target sequence within species. The PNA probe specificity was tested with several bacterial species, including other Campylobacter spp. and their close relatives. All tested C. coli, C. jejuni and C. lari strains were hybridized successfully. Aging of the Campylobacter cultures caused the formation of coccoid forms, which did not hybridize as well as bacteria in the active growth phase, indicating that the probe could be used to assess the physiological status of targeted cells. The PNA FISH methodology detected C. coli by membrane filtration method from C. coli spiked drinking water samples.  相似文献   

16.
Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.  相似文献   

17.
AIMS: Fluorescence in situ hybridization (FISH) has been proposed for species-specific detection, and viability determination of Cryptosporidium parvum oocysts. FISH-based viability determination depends on rRNA decay after loss of viability. We examined the effects of RNase(s) and RNase inhibitors on FISH of C. parvum. METHODS AND RESULTS: FISH was performed using a 5'-Texas red-labelled DNA oligonucleotide probe at 1 pM microl(-1). Intact and heat-permeabilized oocysts were treated with 1-100 microg ml(-1) RNase. FISH of intact oocysts appeared unaffected by exogenous RNase if this was neutralized before permeabilization. FISH fluorescence of heat-killed oocysts stored in phosphate-buffered saline at room temperature decayed by 1/2 after 55 h, but remained detectable after 6 days. Addition of vanadyl ribonucleoside complex (VRC) extended rRNA half-life of heat-permeabilized oocysts to 155 h. CONCLUSIONS: Extended rRNA half-life may result in viability overestimation using FISH. RNase pretreatment before FISH is recommended to destroy residual rRNA in recently killed oocysts. Incorporation of 1-10 mM l(-1) VRC before FISH permeabilization steps should neutralize RNase activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Elimination of FISH fluorescence of nonviable C. parvum is desirable. Use of RNase and VRC is suggested to reduce numbers of false-positive 'viable' oocysts.  相似文献   

18.
In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.  相似文献   

19.
Target site inaccessibility represents a significant problem for fluorescence in situ hybridization (FISH) of 16S rRNA with oligonucleotide probes. Here, unlabeled oligonucleotides (helpers) that bind adjacent to the probe target site were evaluated for their potential to increase weak probe hybridization signals in Escherichia coli DSM 30083(T). The use of helpers enhanced the fluorescence signal of all six probes examined at least fourfold. In one case, the signal of probe Eco474 was increased 25-fold with the use of a single helper probe, H440-2. In another case, four unlabeled helpers raised the FISH signal of a formerly weak probe, Eco585, to the level of the brightest monolabeled oligonucleotide probes available for E. coli. The temperature of dissociation and the mismatch discrimination of probes were not significantly influenced by the addition of helpers. Therefore, using helpers should not cause labeling of additional nontarget organisms at a defined stringency of hybridization. However, the helper action is based on sequence-specific binding, and there is thus a potential for narrowing the target group which must be considered when designing helpers. We conclude that helpers can open inaccessible rRNA regions for FISH with oligonucleotide probes and will thereby further improve the applicability of this technique for in situ identification of microorganisms.  相似文献   

20.
Ribosomal RNA-(rRNA)-targeted oligonucleotide probes are widely used for culture-independent identification of microorganisms in environmental and clinical samples. ProbeBase is a comprehensive database containing more than 700 published rRNA-targeted oligonucleotide probe sequences (status August 2002) with supporting bibliographic and biological annotation that can be accessed through the internet at http://www.probebase.net. Each oligonucleotide probe entry contains information on target organisms, target molecule (small- or large-subunit rRNA) and position, G+C content, predicted melting temperature, molecular weight, necessity of competitor probes, and the reference that originally described the oligonucleotide probe, including a link to the respective abstract at PubMed. In addition, probes successfully used for fluorescence in situ hybridization (FISH) are highlighted and the recommended hybridization conditions are listed. ProbeBase also offers difference alignments for 16S rRNA-targeted probes by using the probe match tool of the ARB software and the latest small-subunit rRNA ARB database (release June 2002). The option to directly submit probe sequences to the probe match tool of the Ribosomal Database Project II (RDP-II) further allows one to extract supplementary information on probe specificities. The two main features of probeBase, 'search probeBase' and 'find probe set', help researchers to find suitable, published oligonucleotide probes for microorganisms of interest or for rRNA gene sequences submitted by the user. Furthermore, the 'search target site' option provides guidance for the development of new FISH probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号