首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Toll and Toll-like receptors represent families of receptors involved in mediating innate immunity response in insects and mammals. Although Drosophila proteome contains multiple Toll paralogs, Toll-1 is, so far, the only receptor to which an immune role has been attributed. In contrast, every single mammalian TLR is a key membrane receptor upstream of the vertebrate immune signaling cascades. The prevailing view is that TLR-mediated immunity is ancient. Structural analysis reveals that Drosophila Toll-9 is the most closely related to vertebrate TLRs and utilizes similar signaling components as Toll-1. This suggests that Toll-9 could be an ancestor of TLR-like receptors and could have immune function. Consistently, it has been reported that over-expression of Toll-9 in immune tissues is sufficient to induce the expression of some antimicrobial peptides in flies. These results have led to the idea that Toll-9 could be a constitutively active receptor that maintain significant levels of antimicrobial molecules and therefore provide constant basal protection against micro-organisms. To test theses hypotheses, we generated and analyzed phenotypes associated with a complete loss-of-function allele of Toll-9. Our results suggest that Toll-9 is neither required to maintain a basal anti-microbial response nor to mount an efficient immune response to bacterial infection.  相似文献   

2.
Insects synthesize a battery of antimicrobial peptides (AMPs) and expression of AMP genes is regulated by the Toll and Imd (immune deficiency) pathways in Drosophila melanogaster. Drosophila Toll pathway is activated after Spätzle (Spz) is cleaved by Spätzle processing enzyme (SPE) to release the active C-terminal C106 domain (DmSpz-C106), which then binds to the Toll receptor to initiate the signaling pathway and regulate expression of AMP genes such as drosomycin. Toll and Spz genes have been identified in other insects, but interaction between Toll and Spz and direct evidence for a Toll-Spz pathway in other insect species have not been demonstrated. Our aim is to investigate a Toll-Spz pathway in Manduca sexta, and compare M. sexta and D. melanogaster Toll-Spz pathways. Co-immunoprecipitation (Co-IP) assays showed that MsTollecto (the ecto-domain of M. sexta Toll) could interact with MsSpz-C108 (the active C-terminal C108 domain of M. sexta Spz) but not with full-length MsSpz, and DmTollecto could interact with DmSpz-C106 but not DmSpz, suggesting that Toll receptor only binds to the active C-terminal domain of Spz. Co-expression of MsToll-MsSpz-C108, but not MsToll-MsSpz, could up-regulate expression of drosomycin gene in Drosophila S2 cells, indicating that MsToll-MsSpz-C108 complex can activate the Toll signaling pathway. In vivo assays showed that activation of AMP genes, including cecropin, attacin, moricin and lebocin, in M. sexta larvae by purified recombinant MsSpz-C108 could be blocked by pre-injection of antibody to MsToll, further confirming a Toll-Spz pathway in M. sexta, a lepidopteran insect.  相似文献   

3.
Tissue and stage-specific expression of the Tolls in Drosophila embryos   总被引:5,自引:0,他引:5  
The Drosophila transmembrane receptor Toll plays a key role in specifying the dorsoventral axis of the embryo. At later stages of development, it controls the immune response of the fly to fungal and Gram-positive bacterial infections. The Drosophila genome has a total of nine Toll-like genes, including the previously characterized Toll (Toll-1) and 18-wheeler (Toll-2). Here we describe the embryonic expression patterns of the seven Toll-like genes Toll-3 through Toll-9. We find that these genes have distinct expression domains and that their expression is dynamically changing throughout embryonic development. This complex and tissue-specific regulation of Toll-like gene expression strongly suggests a role in embryonic development for most Drosophila Tolls. The evolving picture on the Toll family members in Drosophila contrasts with that of mammalian Toll-like receptors, which are predominantly expressed in immune responsive cells where their activation occurs via microbial structural determinants.  相似文献   

4.
Functional analysis of Toll-related genes in Drosophila   总被引:1,自引:0,他引:1  
The Drosophila genome encodes a total of nine Toll and related proteins. The immune and developmental functions of Toll and 18Wheeler (18W) have been analyzed extensively, while the in vivo functions of the other Toll-related proteins require further investigation. We performed transgenic experiments and found that overexpression of Toll-related genes caused different extents of lethality and developmental defects. Moreover, 18w, Toll-6, Toll-7 and Toll-8 often caused related phenotypic changes, consistent with the idea that these four genes have more conserved molecular structure and thus may regulate similar processes in vivo. Deletion alleles of Toll-6, Toll-7 and Toll-8 were generated by targeted homologous recombination or P element excision. These mutant alleles were viable, fertile, and had no detectable defect in the inducible expression of antimicrobial peptide genes except for the Toll-8 mutant had some defects in leg development. The expression of 18w, Toll-7 and Toll-8 mRNA showed wide and overlapping patterns in imaginal discs and the 18w, Toll-8 double and Toll-7, Toll-8 double mutants showed substantially increased lethality. Overall our results suggest that some of the Toll-related proteins, such as 18W, Toll-7 and Toll-8, may have redundant functions in regulating developmental processes.  相似文献   

5.
6.
Upon microbial invasion the innate immune system of Drosophila melanogaster mounts a response that comes in two distinct but complimentary forms, humoral and cellular. A screen to find genes capable of conferring resistance to the Gram-positive Staphylococcus aureus upon ectopic expression in immune response tissues uncovered imd gene. This resistance was not dependent on cellular defenses but rather likely a result of upregulation of the humoral response through increased expression of antimicrobial peptides, including a Toll pathway reporter gene drosomycin. Taken together it appears that Imd pathway is capable of playing a role in resistance to the Gram-positive S. aureus, counter to notions of traditional roles of the Imd pathway thought largely to responsible for resistance to Gram-negative bacteria.  相似文献   

7.
8.
Parker JS  Mizuguchi K  Gay NJ 《Proteins》2001,45(1):71-80
The Drosophila gene Sp?tzle encodes the activating ligand for the Toll receptor. This signaling pathway is required for dorso-ventral patterning in the early embryo and an antifungal immune response in larvae and adults. The genome sequence of Drosophila shows that there are a total of eight Toll-like receptors and these may function in other aspects of embryonic development and innate immunity. Here we describe five Drosophila homologues of Sp?tzle (Spz2-6) found using an iterative searching method. All five appear to encode proteins containing neurotrophin-like cystine-knot domains. In addition, most retain a characteristic intron-exon structure shared with the prototype Sp?tzle gene. This provides evidence that the family arose by ancient gene duplication events and indicates that the gene products may represent activating ligands for corresponding Toll receptors. Expression studies show that only Spz4 is expressed strongly in larvae and adults and thus may be involved in an ancillary antifungal response mediated by Toll-5. By contrast, Spz6 shows a complex spatial and temporally regulated expression pattern in the late embryo. Thus the new Toll/Sp?tzle families of signaling molecules may have important roles in other aspects of development and immunity.  相似文献   

9.
10.
11.
Myeloid differentiation factor 88 (MyD88) is a universal and essential signaling protein in Toll-like receptor/interleukin-1 receptor-induced activation of nuclear factor-kappa B. In this study, two MyD88 protein variants (LvMyD88 and LvMyD88-1) were identified in Litopenaeus vannamei. The LvMyD88 cDNA is 1,848 bp in length and contains an open reading frame (ORF) of 1,428 bp, whereas the LvMyD88-1 cDNA is 1,719 bp in length and has an ORF of 1,299 bp. Both variants encode proteins with death and Toll/interleukin-1 receptor domains and share 91% sequence identity. In healthy L. vannamei, the LvMyD88 genes were highly expressed in hemocytes but at a low level in the hepatopancreas. The LvMyD88s expression was induced in hemocytes after challenge with lipopolysaccharide, CpG-ODN2006, Vibrio parahaemolyticus, Staphyloccocus aureus, and white spot syndrome virus, but not by poly I∶C. Overexpression of LvMyD88 and LvMyD88-1 in Drosophila Schneider 2 cells led to activation of antimicrobial peptide genes and wsv069 (ie1), wsv303, and wsv371. These results suggested that LvMyD88 may play a role in antibacterial and antiviral response in L. vannamei. To our knowledge, this is the first report on MyD88 in shrimp and a variant of MyD88 gene in invertebrates.  相似文献   

12.
13.
Auxin and abscisic acid (ABA) are major plant hormones that act together to modulate numerous aspects of plant growth and development, including seed germination, primary root elongation, and lateral root formation. In this study, we analyzed the loss-of-function mutants of two closely related ROP (Rho of plants) GTPases, ROP9 and ROP10, and found that these ROP GTPases differentially regulate the auxin and ABA responses. rop9 and rop10 mutations enhanced the ABA-induced suppression of seed germination, primary root growth, and lateral root formation and the expression of ABA-responsive genes, whereas rop9 but not rop10 suppressed auxin-induced root phenotypes and auxin-responsive gene expression. These results suggest that both ROP9 and ROP10 function as negative regulators of ABA signaling, and that ROP9, but not ROP10, functions as a positive regulator of auxin signaling. Previously, ROPinteractive CRIB motif-containing protein 1 (RIC1) was reported to participate in auxin and ABA responses, and to have a similar effect as ROP9 and ROP10 on gene expression, root development, and seed germination. Because RIC proteins mediate ROP GTPase signaling, our results suggest that ROP9 and ROP10 GTPases function upstream of RIC1 in auxin- and ABA-regulated root development and seed germination.  相似文献   

14.
15.
The Drosophila Necrotic protein is a serine proteinase inhibitor, which regulates the Toll-mediated innate immune response. Necrotic specifically inhibits an extracellular serine proteinase cascade leading to activation of the Toll ligand, Spätzle. Necrotic carries a polyglutamine extension amino-terminal to the core serpin structure. We show here that cleavage of this N-terminal extension occurs following immune challenge. This modification is blocked in PGRP-SAsemmelweiss mutants after Gram-positive bacterial challenge and in persephone mutants after fungal or Gram-positive bacterial challenge, indicating that activation of either of the Toll pathway upstream branches induces N-terminal cleavage of the serpin. The absolute requirement of persephone gene product for this cleavage indicates that Gram-positive bacteria activate a redundant set of proteinases upstream of Toll. Both full-length Necrotic and the core serpin are active inhibitors of a range of serine proteinases: the highest affinity being for cathepsin G and elastases. We found a 13-fold increase in the specificity of the core serpin over that of full-length Necrotic for one of the tested proteinases (porcine pancreatic elastase). This finding indicates that cleavage of the Necrotic amino-terminal extension might modulate Toll activation following the initial immune response.  相似文献   

16.
Toll receptor was first discovered in Drosophila and has an important function in the innate immunity of invertebrates. In this study, the Toll receptor HcToll1 from Hyriopsis cumingii with a full length of 3810 bp consisting of a 3687 bp ORF that encodes a total of 1228 amino acids protein was selected for further study. The HcToll1 protein consisted of a signal peptide, 17 LRR domains, 2 LRRCT domains, 1 LRRNT domain, 1 TM domain, and 1 TIR domain. Phylogenetic analysis results showed that HcToll1 was clustered in one group together with other mollusca tolls. RT-PCR analysis results showed that HcToll1 was expressed in all tested tissues such as hemocytes, hepatopancreas, gills, and mantle. qRT-PCR analysis results showed that HcToll1 expression was increased by the presence of Escherichia coli, Vibrio anguillarum, Staphyloccocus aureus, and White Spot Syndrome Virus (WSSV). Over-expression of HcTIR could up-regulate expression of drosomycin gene in Drosophila S2 cells. The results of our study indicated that HcToll1 is a functional Toll and it has an important function in the generation of innate immune responses of H. cumingii against microbial challenge.  相似文献   

17.
The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-Å resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG.  相似文献   

18.
The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts.  相似文献   

19.
20.
Proteins containing the evolutionarily conserved SET domain are involved in regulation of eukaryotic gene expression and chromatin structure through their histone lysine methyltransferase (HMTase) activity. The Drosophila SU(VAR)3-9 protein and related proteins of other organisms have been associated with gene repression and heterochromatinization. In Arabidopsis there are 10 SUVH and 5 SUVR genes encoding proteins similar to SU(VAR)3-9, and 4 SUVH proteins have been shown to control heterochromatic silencing by its HMTase activity and by directing DNA methylation. The SUVR proteins differ from the SUVH proteins in their domain structure, and we show that the closely related SUVR1, SUVR2 and SUVR4 proteins contain a novel domain at their N-terminus, and a SUVR specific region preceding the SET domain. Green fluorescent protein (GFP)-fusions of these SUVR proteins preferably localize to the nucleolus, suggesting involvement in regulation of rRNA expression, in contrast to other SET-domain proteins studied so far. A novel HMTase specificity was demonstrated for SUVR4, in that monomethylated histone H3K9 is its preferred substrate in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号