首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Before this, the field of bioengineering refers to biomedical engineering of prosthetic devices in physiology. In addition to exciting applications of engineering principles, UCSD Department of Bioengineering began to extend the notion of engineering models of physiological systems to physiological processes. This led to a conceptual shift in the discipline and contributed to the areas of tissue and physiological process engineering. In 1988, Dr. Shu Chien and Richard Skalak joined UCSD to begin research and education on cellular and molecular bioengineering, especially, mechanobiology. Dr. Fung and Dr. Skalak initiated the new field of tissue engineering. These two decades of evolution of bioengineering and its growth across the country was spearheaded by the Whitaker Foundation, whose leitmotif was the building of bioand biomedical engineering across the country. We have garnered other accomplishments in the following fields: regenerative medicine; bioinspired artificial extracellular matrices; flexible bioelectronics and tatoos; cells show how to synchronize biological clocks; and systems medicine.  相似文献   

3.
The emerging nanomedicine therapeutics have incorporated photonics technologies to develop precise medical treatment. Among the light regulated approaches, light-induced liposome technology has been explored and developed as a novel tool for spatiotemporal control of cargo release. Compared with the traditional liposome formulation, this triggering feature largely enhanced the therapeutic efficacy and minimized the side effects of the therapeutic substance. In this review paper, we discussed the basics of the light-induced liposomes including the engineering methods and photoresponsiveness mechanisms. We also reviewed current biomedical studies relating to light-induced liposome delivery systems, with an emphasis in the field of cancer therapy.  相似文献   

4.
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.  相似文献   

5.
电纺技术在生物医学中的应用进展   总被引:1,自引:0,他引:1  
电纺技术已经成为结合多组分化合物与织造技术的关键工具,可改变电纺丝材料的化学、物理和生物特性,使其与不同的应用环境相适应。通过电纺技术制作的功能化纳米电纺丝材料,在组织工程、创伤敷料、酶的固定化和药物(基因)载体等生物医学方面得到了广泛的应用。新型的电纺技术可以进一步优化纳米电纺丝的特性,如同轴电纺、二相电纺技术;电纺丝膜的修饰也为调控电纺丝的各向异性和多孔性提供了有效的方法。该文将概述功能化电纺丝的纺织技术及修饰方法在生物医学领域的研究与应用进展。  相似文献   

6.
Human saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.  相似文献   

7.
随着生物医学诊断和治疗的持续深入研究,出现了多种医学诊断和治疗新方法,为人类的健康提供了更大的保证,其中纳米生物技术在生物医学诊断和治疗中的应用日益增多,基于纳米技术,开发传统材料的生物医学新应用成为了人们的研究热点。普鲁士蓝是一种历史悠久的蓝色染料,其制备过程简单、绿色、成本低,化学结构稳定,具有优良的物理、化学、光学以及磁性等性能,已经在许多领域得到了广泛的应用。近年来,普鲁士蓝开始在生物医学诊断和治疗领域中崭露头角,它已经成功的被开发为新型的核磁共振造影剂和光声成像造影剂,并且在药物输送系统和光热治疗等领域也开始占有一席之地,开发基于纳米技术的普鲁士蓝的生物医学应用已经成为极具吸引力的研究方向。本文对普鲁士蓝在生物医学诊断和治疗中的应用及进展进行综述。  相似文献   

8.
During the past decade, melanins and melanogenesis have attracted growing interest for a broad range of biomedical and technological applications. The burst of polydopamine‐based multifunctional coatings in materials science is just one example, and the list may be expanded to include melanin thin films for organic electronics and bioelectronics, drug delivery systems, functional nanoparticles and biointerfaces, sunscreens, environmental remediation devices. Despite considerable advances, applied research on melanins and melanogenesis is still far from being mature. A closer intersectoral interaction between research centers is essential to raise the interests and increase the awareness of the biomedical, biomaterials science and hi‐tech sectors of the manifold opportunities offered by pigment cells and related metabolic pathways. Starting from a survey of biological roles and functions, the present review aims at providing an interdisciplinary perspective of melanin pigments and related pathway with a view to showing how it is possible to translate current knowledge about physical and chemical properties and control mechanisms into new bioinspired solutions for biomedical, dermocosmetic, and technological applications.  相似文献   

9.
10.
11.
The word "biophotons" is used to denote a permanent spontaneous photon emission from all living systems. It displays a few up to some hundred photons/(s x cm2) within the spectral range from at least 260 to 800 nm. It is closely linked to delayed luminescence (DL) of biological tissues which describes the long term and ultra weak reemission of photons after exposure to light illumination. During relaxation DL turns continuously into the steady state biophoton emission, where both, DL and biophoton emission exhibit mode coupling over the entire spectrum and a Poissonian photo count distribution. DL is representing excited states of the biophoton field. The physical properties indicate that biophotons originate from fully coherent and sometimes even squeezed states. The physical analysis provides thermodynamic and quantum optical interpretation, in order to understand the biological impacts of biophotons. Biological phenomena like intracellular and intercellular communication, cell growth and differentiation, interactions among biological systems (like "Gestaltbildung" or swarming), and microbial infections can be understood in terms of biophotons. "Biophotonics", the corresponding field of applications, provide a new powerful tool for assessing the quality of food (like freshness and shelf life), microbial infections, environmental influences and for substantiating medical diagnosis and therapy.  相似文献   

12.
13.
合成生物学自诞生以来对生物学领域的研究产生了重要的影响。利用工程学思维与方法,合成生物学揭开了生命系统许多调控机制,改造并扩展了一系列生物元件,同时带来了广泛的生物医学应用,为疾病诊断与治疗提供了新的思路。本文综述了适用于哺乳动物细胞或者细菌的合成基因线路并用于疾病诊断与治疗领域的最新进展,为未来智能药物设计提供新的思路。  相似文献   

14.
Since their discovery at the end of the previous millennium, carbon nanotubes (CNTs) have been the object of thousands of papers describing their applications in fields ranging from physics to electronics, photonics, chemistry, biology, and medicine. The development of chemical approaches to modify their graphitic sidewalls enabled the generation of poly(ethylene glycol) (PEG)-modified CNTs and their exploration in multiple biomedical applications. Studies at the cellular and organism level revealed that PEG-modified CNTs have favorable pharmacokinetic and toxicology profiles. Recently, PEG-modified CNTs have been successfully tested in preclinical studies in the fields of oncology, neurology, vaccination, and imaging, suggesting that they are well suited for the generation of novel multifunctional nanodrugs. Here we will review published data about the application of PEG-modified CNTs as in vitro and in vivo therapeutic and imaging tools and describe what is known about the interaction between PEG-modified CNTs and biological systems. Although several pieces of the puzzle are still missing, we will also attempt to formulate a preliminary structure-function model for PEG-modified CNT cellular trafficking, disposition, and side effects.  相似文献   

15.
Proteins are the key players in many cellular processes. Their composition, trafficking, and interactions underlie the dynamic processes of life. Furthermore, diseases are frequently accompanied by malfunction of proteins at multiple levels. Understanding how biological processes are regulated at the protein level is critically important to understanding the molecular basis for diseases and often shed light on disease prevention, diagnosis, and treatment. With rapid advances in mass spectrometry (MS) instruments and experimental methodologies, MS-based proteomics has become a reliable and essential tool for elucidating biological processes at the protein level. Over the past decade, we have witnessed great expansion of knowledge of human diseases with the application of MS-based proteomic technologies, which has led to many exciting discoveries. Herein we review the recent progress in MS-based proteomics in biomedical research, including that in establishing disease-related proteomes and interactomes. We also discuss how this progress will benefit biomedical research and clinical diagnosis and treatment of disease.  相似文献   

16.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

17.
Heterogeneous photocatalysis using semiconductors and renewable solar energy has been regarded as one of the most promising processes to alleviate, and even solve, both the world crises of energy supply and environmental pollution. In the past few years, many encouraging achievements have been made in the research area of graphene‐based semiconductor photocatalysts. Among them, CdS/graphene nanocomposites have attracted extensive attention as an important kind of photocatalyst in chemical and material science, due to its superior photocatalytic activity and photostability under visible‐light irradiation. The aim here is to address the enhancement mechanism of the photocatalytic performance of CdS/graphene composite photocatalysts, and systematically summarize recent progress regarding the design and synthesis of CdS/graphene nanocomposites. These nanocomposites are promising for a great diversity of applications in visible‐light photocatalytic fields, including artificial photosynthetic systems (photocatalytic hydrogen production and CO2 reduction), environmental remediation, and organic photosynthesis. Special attention is given to the photocatalytic hydrogen production and pollutant photodegradation over CdS/graphene nanocomposite photocatalysts. Furthermore, perspectives on CdS/graphene‐based materials are discussed, including the various remaining challenges for large‐scale applications, identifying prospective areas for related research in this field.  相似文献   

18.
We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging.  相似文献   

19.
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle–DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle–DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle–DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle–DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.  相似文献   

20.
从50年前英国科学家解析出第一个蛋白质晶体结构以来,蛋白质晶体学历经数个里程碑式的发展,已经成为一门成熟的高科技学科,是结构生物学的主要研究手段。近年来结构生物学发展迅速并和其他学科相互渗透交叉,特别是受到结构基因组学等热点学科的极大带动。作为结构生物学的基本手段和技术,蛋白质晶体学从解析简单的蛋白质三维结构延伸到解决各类生物大分子及复合物结构,并更加注重研究结构与功能之间的相互关系,派生出诸如基于结构的药物设计等应用性很强的分支。生物技术及计算机技术的飞速发展,尤其是高通量技术在生物学领域的应用,为蛋白质晶体学带来了全新的概念和更加广阔的前景。文章将主要介绍蛋白质晶体学技术的一些历史发展以及对未来的展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号