首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots.  相似文献   

2.
Monocotyledons and dicotyledons are distinct, not only in their body plans and developmental patterns, but also in the structural features of their cell walls. The recent completion of the rice (Oryza sativa) genomic sequence and publication of the sequence data, together with the completed database of the Arabidopsis thaliana genome, provide the first opportunity to compare the full complement of cell-wall-related genes from the two distinct classes of flowering plants. We made this comparison by exploiting the fact that Arabidopsis and rice have type I and type II walls, respectively, and therefore represent the two extremes in terms of the structural features of plant cell walls. In this review article, we classify all cell-wall-related genes into 32 gene families, and generate their phylogenetic trees. Using these data, we can phylogenetically compare individual genes of particular interest between Arabidopsis and rice. This comparative genome approach shows that the differences in wall architecture in the two plant groups actually mirror the diversity of the individual gene families involved in the cell-wall dynamics of the respective plant species. This study also identifies putative rice orthologs of genes with well-defined functions in Arabidopsis and other plant species.  相似文献   

3.
4.
Using a strategy requiring only modest computational resources, wheat expressed sequence tag (EST) sequences from various sources were assembled into contigs and compared with a nonredundant barley sequence assembly, with ESTs, with complete draft genome sequences of rice and Arabidopsis thaliana, and with ESTs from other plant species. These comparisons indicate that (i) wheat sequences available from public sources represent a substantial proportion of the diversity of wheat coding sequences, (ii) prediction of open reading frames in the whole genome sequence improves when supplemented with EST information from other species, (iii) a substantial number of candidates for novel genes that are unique to wheat or related species can be identified, and (iv) a smaller number of genes can be identified that are common to monocots and dicots but absent from Arabidopsis. The sequences in the last group may have been lost from Arabidopsis after descendance from a common ancestor. Examples of potential novel wheat genes and Triticeae-specific genes are presented.  相似文献   

5.
6.
7.
8.
Genes for an isoamylase-like debranching enzyme have been isolated from rice and Aegilops tauschii, the donor of the D genome to wheat. The structures of the genes are very similar to each other and to the maize SU1 isoamylase gene and consist of 18 exons spread over approximately 7.5 kb. Southern analysis and fluorescent in situ hybridization showed the Ae. tauschii gene to be located in the proximal region of the short arm of chromosome 7D, thus showing synteny with the localization of the rice isoamylase gene on rice chromosome 8. Analysis of the expression pattern of wheat sugary isoamylase genes indicates that they are strongly expressed in the developing endosperm 6 days after flowering. Three distinct Sugary-type cDNA sequences were isolated from the wheat endosperm that are likely to correspond to the products of the three genomes. The deduced amino acid sequence of rice and wheat Sugary-type isoamylase is compared with other sequences available in the database and the results demonstrate that there are three types of isoamylase sequences in plants: those containing 18 exons (the Sugary-type isoamylase gene), those containing 21 exons, and those containing only 1 exon. It is possible that different combinations of isoamylase genes are expressed in different tissues.  相似文献   

9.
Phylogenetic analysis of plant basic helix-loop-helix proteins   总被引:14,自引:0,他引:14  
  相似文献   

10.
Among the cereals, wheat is the most widely grown geographically and is part of the staple diet in much of the world. Understanding how the cereal endosperm develops and functions will help generate better tools to manipulate grain qualities important to end-users. We used a genomics approach to identify and characterize genes that are expressed in the wheat endosperm. We analyzed the 17,949 publicly available wheat endosperm EST sequences to identify genes involved in the biological processes that occur within this tissue. Clustering and assembly of the ESTs resulted in the identification of 6,187 tentative unique genes, 2,358 of which formed contigs and 3,829 remained as singletons. A BLAST similarity search against the NCBI non-redundant sequence database revealed abundant messages for storage proteins, putative defense proteins, and proteins involved in starch and sucrose metabolism. The level of abundance of the putatively identified genes reflects the physiology of the developing endosperm. Half of the identified genes have unknown functions. Approximately 61% of the endosperm ESTs has been tentatively mapped in the hexaploid wheat genome. Using microarrays for global RNA profiling, we identified endosperm genes that are specifically up regulated in the developing grain.  相似文献   

11.
12.
Cereal caryopsis transport tissues are essential channels via which nutrients are transported into the embryo and endosperm. There are differences and similarities between caryopsis transport tissues of maize, sorghum and wheat. Vascular bundle, endosperm transfer cells, endosperm conducting cells and embryo surrounding region are common in maize, sorghum and wheat. Placentochalaza is special in maize and sorghum, while chalaza and nucellar projection transfer cells are special in wheat. There is an obvious apoplastic cavity between maternal and filial tissues in sorghum and wheat caryopses, but there is no obvious apoplastic cavity in maize caryopsis. Based on the latest research, the development and function of the three cereal caryopsis transport tissues are discussed and investigated in this paper.  相似文献   

13.
The casein kinase CK2 is one of the major multifunctional protein kinases in cells that is expressed ubiquitously and is essential for survival. The alpha-subunit of CK2 is thought to be involved in light-regulated gene expression and rhythmic expression of genes by circadian rhythm in plants. The rice chromosome-3 region containing the photoperiod-response Hd6 gene, an orthologue of the CK2alpha genes of Arabidopsis and maize, is in synteny with the wheat chromosome-5A Vrn-A1 region. This evidence proposes two possibilities, first the wheat Vrn-A1 is an orthologue of the rice CK2alpha, and second the wheat CK2alpha which has not yet been identified is located independently but tightly linked to Vrn-A1. To clarify whether the wheat CK2alpha gene is conserved in the Vrn-A1 region and to elucidate the above two possibilities, we attempted to isolate this gene from the wheat cDNA library and to map it on the chromosome-5A region that is syntenous to the rice Hd6 region. The isolated cDNA clone showed an extremely high homology with the Arabidopsis CK2alpha gene. Using this clone as a probe genomic Southern-blot analyses of the aneuploid lines available in Chinese Spring assigned the wheat homologue of CK2alpha to the long arm of chromosome 5A. Furthermore, a linkage analysis using an F(2) population having recombination in the Vrn-A1 region revealed that the wheat CK2alpha, designated as tck2a, is tightly linked to Vrn-A1 by 1.1 cM  相似文献   

14.
15.
Zhang M  Xu C  von Wettstein D  Liu B 《Plant physiology》2011,156(4):1955-1966
It has been well established that DNA cytosine methylation plays essential regulatory roles in imprinting gene expression in endosperm, and hence normal embryonic development, in the model plant Arabidopsis (Arabidopsis thaliana). Nonetheless, the developmental role of this epigenetic marker in cereal crops remains largely unexplored. Here, we report for sorghum (Sorghum bicolor) differences in relative cytosine methylation levels and patterns at 5'-CCGG sites in seven tissues (endosperm, embryo, leaf, root, young inflorescence, anther, and ovary), and characterize a set of tissue-specific differentially methylated regions (TDMRs). We found that the most enriched TDMRs in sorghum are specific for the endosperm and are generated concomitantly but imbalanced by decrease versus increase in cytosine methylation at multiple 5'-CCGG sites across the genome. This leads to more extensive demethylation in the endosperm than in other tissues, where TDMRs are mainly tissue nonspecific rather than specific to a particular tissue. Accordingly, relative to endosperm, the other six tissues showed grossly similar levels though distinct patterns of cytosine methylation, presumably as a result of a similar extent of concomitant decrease versus increase in cytosine methylation that occurred at variable genomic loci. All four tested TDMRs were validated by bisulfite genomic sequencing. Diverse sequences were found to underlie the TDMRs, including those encoding various known-function or predicted proteins, transposable elements, and those bearing homology to putative imprinted genes in maize (Zea mays). We further found that the expression pattern of at least some genic TDMRs was correlated with its tissue-specific methylation state, implicating a developmental role of DNA methylation in regulating tissue-specific or -preferential gene expression in sorghum.  相似文献   

16.
17.
18.
19.
In angiosperms, interspecific crosses often display hybrid incompatibilities that are manifested as under‐proliferation or over‐proliferation of endosperm. Recent analyses using crosses between Arabidopsis thaliana and its related species with different ploidy levels have shown that interspecific hybridization causes delayed developmental transition and increased mitotic activity in the endosperm. In this study, we investigated endosperm development in interspecific crosses between diploid Oryza species. In a cross between female O. sativa and male O. punctata, we found that the hybrid endosperm was reduced in size and this cross was associated with precocious developmental transition. By contrast, the cross between O. sativa and O. longistaminata generated enlarged hybrid endosperm at the mid‐point of seed development and this cross was associated with delayed developmental transition. Subsequently, the hybrid endosperm displayed a shriveled appearance at the seed maturation stage. We found that the accumulation of storage products and the expression patterns of several marker genes were also altered in the hybrid endosperm. By contrast, the rate of syncytial mitotic nuclear divisions was not significantly affected. The gene OsMADS87 showed a maternal origin‐specific expression pattern in rice endosperm, in contrast to its Arabidopsis homologue PHERES1, which shows paternal origin‐specific expression. OsMADS87 expression was decreased or increased depending on the type of developmental transition change in the hybrid rice endosperm. Our results indicate that one of the interspecies hybridization barriers in Oryza endosperm is mediated by precocious or delayed developmental alterations and de‐regulation of OsMADS87, without change to the rate of syncytial mitotic nuclear division in the hybrid endosperm.  相似文献   

20.
Growth and size measurements as well as morphological characteristics of wheat (Triticum aestivum L. cv. Chinese Spring) caryopsis development are classified into five (I–V) groups, each representing a distinct developmental stage. Such staging will hopefully aid in experimental approaches and comparative studies of wheat embryo and endosperm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号