首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hormonal signalling plays a pivotal role in almost every aspect of plant development, and of high priority has been to identify the receptors that perceive these hormones. In the past seven months, the receptors for the plant hormones auxin, gibberellins and abscisic acid have been identified. These join the receptors that have previously been identified for ethylene, brassinosteroids and cytokinins. This review therefore comes at an exciting time for plant developmental biology, as the new findings shed light on our current understanding of the structure and function of the various hormone receptors, their related signalling pathways and their role in regulating plant development.  相似文献   

2.
Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence.  相似文献   

3.
Stephan Pollmann (Corresponding author) Phytohormones regulate a wide array of developmental processes throughout the life cycle of plants. Herein, the various plant hormones may interact additively, synergistically, or antagonistically. By their cooperation they create a delicate regulatory network whose net output largely depends on the action of specific phytohormone combinations rather than on the independent activities of separate hormones. While most classical studies of plant hormonal control have focused mainly on the action of single hormones or on the synergistic interaction of hormones in regulating various developmental processes, recent work is beginning to shed light on the crosstalk of nominally antagonistic plant hormones, such as gibberellins and auxins with oxylipins or abscisic acid. In this review, we summarize our current understanding of how two of the first sight antagonistic plant hormones, i.e. auxins and oxylipins, interact in controlling plant responses and development.  相似文献   

4.
Various environmental and internal cues play essential roles in regulating diverse aspects of plant growth and development. Phytohormones usually coordinate multiple stimuli to directly regulate multiple developmental programs. Recent studies have provided progresses into the complexity of their cross talk. Particularly, the signaling pathways of various phytohormones have been revealed, leading to the discovery of the mechanisms of the interplay among different hormone signaling pathways. This review focuses on the recent advances of the signaling cross-talk between brassinosteroids and other hormones, including abscisic acid, auxin, gibberellins, ethylene and jasmonate.Key words: brassinosteroids, plant hormone, abscisic acid, auxin, cross talk, signaling  相似文献   

5.
Plant growth and development is influenced by mutual interactions among plant hormones. The five classical plant hormones are auxins, cytokinins, gibberellins, abscisic acid and ethylene. They are small diffusible molecules that easily penetrate between cells. In addition, newer classes of plant hormones have been identified such as brassinosteroids, jasmonic acid, salicylic acid and various small proteins or peptides. These hormones also play important roles in the regulation of plant growth and development. This review begins with a brief summary of the current findings on plant hormones. Based on this knowledge, a conceptual model about interactions among plant hormones is built so as to link and develop an understanding of the diverse functions of different plant hormones as a whole in plants.Key words: abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, plant peptide hormones  相似文献   

6.
Sterols found in all eukaryotic organisms are membrane components which regulate the fluidity and the permeability of phospholipid bilayers. Certain sterols in minute amounts, such as campesterol in Arabidopsis thaliana, are precursors of oxidized steroids acting as growth hormones collectively named brassinosteroids. The crucial importance of brassinosteroids upon growth and development has been established through the study of a set of dwarf mutants affected in brassinosteroid synthesis or perception. Some of these dwarfs are, in fact, deficient in the final steps of sterol biosynthesis and their developmental phenotypes are primarily caused by a depletion in the sterol precursor for brassinosteroids. Recently, the characterization of genes encoding sterol biosynthetic enzymes and the isolation of novel plant lines affected in the expression of those genes, either by insertional or classical mutagenesis, overexpression or cosuppression, have shed new light on the involvement of sterols in biological processes such as embryonic development, cell and plant growth, and fertility, which will be presented and discussed in this review article.  相似文献   

7.
It is becoming increasingly apparent that the long-distance signalling associated with many developmental processes is complex and that novel hormone-like signals may play substantial roles. The past decades have seen several substances (e.g. brassinosteroids, systemin and other polypeptides, mevalonic and jasmonic acids, polyamines, oligosaccharides, flavonoids, and quinones) vie for a place among the classical plant hormones (e.g. Spaink, 1996). Recent microinjection and grafting studies have also shown that RNA may act as a long-distance signal (Jorgensen et al ., 1998; Xoconostle-Cázares et al ., 1999). In this issue, Hannah et al . describe long-distance signalling and the regulation of root–shoot partitioning in dwarf lethal or dosage-dependent lethal ( DL ) mutants of common bean (Shii et al ., 1980, 1981), and present evidence indicating that substances in addition to classical plant hormones (e.g. cytokinins) may be involved.
As in the report by Hannah et al ., much of the evidence for roles of unidentified long-distance signals in the control of plant development is indirect. The possibility that a small number of long-distance signals might control a multitude of developmental processes arises through the potential for differences in tissue sensitivity, fluctuations in hormone levels and differences in the nature of responses of different tissues to the same hormone. Consequently, particular hormones may influence numerous processes seemingly simultaneously, yet independently. Even so, long-distance signalling is involved in processes as diverse as root–shoot balance, senescence, branching, flowering, nodulation, stress responses and nutrient uptake. Through comparison of even a few different developmental processes, progress can be made to reveal the true complexity of plant development. Using this approach it is also clear that many unknown signals may be involved.  相似文献   

8.
Auxin: a master regulator in plant root development   总被引:5,自引:0,他引:5  
The demand for increased crop productivity and the predicted challenges related to plant survival under adverse environmental conditions have renewed the interest in research in root biology. Various physiological and genetic studies have provided ample evidence in support of the role of plant growth regulators in root development. The biosynthesis and transport of auxin and its signaling play a crucial role in controlling root growth and development. The univocal role of auxin in root development has established it as a master regulator. Other plant hormones, such as cytokinins, brassinosteroids, ethylene, abscisic acid, gibberellins, jasmonic acid, polyamines and strigolactones interact either synergistically or antagonistically with auxin to trigger cascades of events leading to root morphogenesis and development. In recent years, the availability of biological resources, development of modern tools and experimental approaches have led to the advancement of knowledge in root development. Research in the areas of hormone signal perception, understanding network of events involved in hormone action and the transport of plant hormones has added a new dimension to root biology. The present review highlights some of the important conceptual developments in the interplay of auxin and other plant hormones and associated downstream events affecting root development.  相似文献   

9.
Hormone interactions during lateral root formation   总被引:2,自引:0,他引:2  
Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.  相似文献   

10.
Role of plant hormones in plant defence responses   总被引:13,自引:0,他引:13  
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.  相似文献   

11.
Plant hormones regulate plant growth and development by affecting an array of cellular, physiological, and developmental processes, including, but not limited to, cell division and elongation, stomatal regulation, photosynthesis, transpiration, ion uptake and transport, initiation of leaf, flower and fruit development, and senescence. Environmental factors such as salinity, drought, and extreme temperatures may cause a reduction in plant growth and productivity by altering the endogenous levels of plant hormones, sensitivity to plant hormones, and/or signaling pathways. Molecular and physiological studies have determined that plant hormones and abiotic stresses have interactive effects on a number of basic biochemical and physiological processes, leading to reduced plant growth and development. Various strategies have been considered or employed to maximize plant growth and productivity under environmental stresses such as salt-stress. A fundamental approach is to develop salt-tolerant plants through genetic means. Breeding for salt tolerance, however, is a long-term endeavor with its own complexities and inherent difficulties. The success of this approach depends, among others, on the availability of genetic sources of tolerance and reliable screening techniques, identification and successful transfer of genetic components of tolerance to desired genetic backgrounds, and development of elite breeding lines and cultivars with salt tolerance and other desirable agricultural characteristics. Such extensive processes have delayed development of successful salt-tolerant cultivars in most crop species. An alternative and technically simpler approach is to induce salt tolerance through exogenous application of certain plant growth–regulating compounds. This approach has gained significant interest during the past decade, when a wealth of new knowledge has become available on the beneficial roles of the six classes of plant hormones (auxins, gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids) as well as several other plant growth–regulating substances (jasmonates, salicylates, polyamines, triacontanol, ascorbic acid, and tocopherols) on plant stress tolerance. Among these, brassinosteroids (BRs) and salicylic acid (SA) have been studied most extensively. Both BRs and SA are ubiquitous in the plant kingdom, affecting plant growth and development in many different ways, and are known to improve plant stress tolerance. In this article, we review and discuss the current knowledge and possible applications of BRs and SA that could be used to mitigate the harmful effects of salt-stress in plants. We also discuss the roles of exogenous applications of BRs and SA in the regulation of various biochemical and physiological processes leading to improved salt tolerance in plants.  相似文献   

12.
Plant growth in dense vegetation can be strongly affected by competition for light between neighbours. These neighbours can not only be detected through phytochrome-mediated perception of a reduced red:far-red ratio, but also through altered blue light fluence rates. A reduction in blue light (low blue) induces a set of phenotypic traits, such as shoot elongation, to consolidate light capture; these are called shade avoidance responses. Here we show that both auxin and brassinosteroids (BR) play an important role in the regulation of enhanced hypocotyl elongation of Arabidopsis seedlings in response to blue light depletion. Only when both hormones are experimentally blocked simultaneously, using mutants and chemical inhibitors, will the response be fully inhibited. Upon exposure to low blue several members of the cell wall modifying XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) protein family are regulated as well. Interestingly, auxin and BR each regulate a subset of these XTHs, by which they could regulate cell elongation. We hypothesize that auxin and BR regulate specific XTH genes in a non-redundant and non-synergistic manner during low-blue-induced shade avoidance responses of Arabidopsis seedlings, which explains why both hormones are required for an intact low-blue response.  相似文献   

13.
The essential role of brassinosteroids (BRs) in normal plant growth, development and physiology has been established by the analysis of biosynthesis and signal transduction mutants. Some of the BR-related mutants also display altered sensitivity to the phytohormone abscisic acid (ABA) suggesting that BRs normally counteract the effects of ABA on root growth, seed germination, and possibly stomatal movement. In this study, the effect of a specific BR, brassinolide (BL), on guard cell function of Vicia faba was examined alone and in conjunction with ABA. Unlike other described plant responses, BL did not oppose the effect of ABA in regulation of stomatal movement. On the contrary, BL modulated stomatal aperture by promoting stomatal closure and inhibiting stomatal opening, functions of this hormone that were previously undescribed. This study also demonstrated a role for plant steroidal hormones in ion channel regulation: BL inhibited inwardly rectifying K+ currents of V. faba guard cell protoplasts in a manner similar to ABA. In both stomatal movement assays and whole-cell patch clamp experiments, the effects of BL and ABA applied together were not additive, suggesting that these two hormones may function in interacting pathways to regulate stomatal apertures and guard cell physiology.  相似文献   

14.
Over the past decades many studies have aimed at elucidating the regulation of seed dormancy and germination. Many hypotheses have been proposed and rejected but the regulatory principle behind changes in dormancy and induction of germination is still a black box. The majority of proposed mechanisms have a role for certain plant hormones in common. Abscisic acid and the gibberellins are the hormones most frequently suggested to control these processes. The development of hormone-deficient mutants made it possible to provide direct evidence for the involvement of hormones in germination and dormancy related processes.In the present paper an attempt is made to assess the role of abscisic acid and gibberellins in the transitions between dormant and non-dormant states and germination. First a conceptual framework is presented in which the different states of dormancy and germination are defined in order to contribute to a solution of the semantic confusion about these terms that has existed since the beginning of seed physiology.It is concluded that abscisic acid plays a pivotal role during the development of primary dormancy and gibberellins are involved in the induction of germination. Changes in sensitivity to these hormones occur during changes in dormancy. Both synthesis of and responsiveness to the hormones are controlled by natural environmental factors such as light, temperature and nitrate.  相似文献   

15.
Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::beta-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways.  相似文献   

16.

Background

The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant''s fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown.

Scope

This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH.

Conclusions

Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.  相似文献   

17.
Leaf senescence is a genetically controlled dismantling programme that enables plants to efficiently remobilise nutrients to new growing sinks. It involves substantial metabolic reprogramming whose timing is affected by developmental and environmental signals. Plant hormones have long been known to affect the timing of leaf senescence, but they also affect plant development and stress responses. It has therefore been difficult to tease apart how the different hormones regulate the onset and progression of leaf senescence, i.e., whether they directly affect leaf senescence or affect it indirectly by altering the developmental programme or by altering plants’ response to stress. Here we review research on hormonal regulation of leaf senescence and propose that hormones affect senescence through differential responses to developmental and environmental signals. We suggest that leaf senescence strictly depends on developmental changes, after which senescence can be induced, depending on the type of hormonal and environmental cues.  相似文献   

18.
Several plant hormones, including auxin, brassinosteroids and gibberellins, are required for skotomorphogenesis, which is the etiolated growth that seedlings undergo in the absence of light. To examine the growth of abscisic acid (ABA)-deficient mutants in the dark, we analysed several aba1 loss-of-function alleles, which are deficient in zeaxanthin epoxidase. The aba1 mutants displayed a partially de-etiolated phenotype, including reduced hypocotyl growth, cotyledon expansion and the development of true leaves, during late skotomorphogenic growth. In contrast, only small differences in hypocotyl growth were found between wild-type seedlings and ABA-deficient mutants impaired in subsequent steps of the pathway, namely nced3, aba2, aba3 and aao3. Interestingly, phenocopies of the partially de-etiolated phenotype of the aba1 mutants were obtained when wild-type seedlings were dark-grown on medium supplemented with fluridone, an inhibitor of phytoene desaturase, and hence, of carotenoid biosynthesis. ABA supplementation did not restore the normal skotomorphogenic growth of aba1 mutants or fluridone-treated wild-type plants, suggesting a direct inhibitory effect of fluridone on carotenoid biosynthesis. In addition, aba1 mutants showed impaired production of the beta-carotene-derived xanthophylls, neoxanthin, violaxanthin and antheraxanthin. Because fluridone treatment of wild-type plants phenocopied the phenotype of dark-grown aba1 mutants, impaired carotenoid biosynthesis in aba1 mutants is probably responsible for the observed skotomorphogenic phenotype. Thus, ABA1 is required for skotomorphogenic growth, and beta-carotene-derived xanthophylls are putative regulators of skotomorphogenesis.  相似文献   

19.
Brassinosteroids which show high structural similarity to animal steroid hormones elicit a variety of growth responses when exogeneously applied to plant tissues. Thus far however, the function of endogeneous brassinosteroids in higher plants has been unclear. This paper describes three extremely dwarfed Arabidopsis thaliana mutants, cbb1 (dwf1-6), cbb2 and cbb3, which are impared in cell elongation controlled by brassinosteroids. While cbb1 (dwf1-6) and cbb3 can be phenotypically normalized to wild-type by feeding with brassinosteroids indicating deficiencies of brassinosteroid biosynthesis, cbb2 is brassinosteroid-insensitive and defines a function required for further metabolic conversion necessary for biological activity or for perception/signal transduction of these growth-regulating plant steroid hormones. Expression of the meri5 and TCH4 genes is low in all three cbb mutants and can be restored to wild-type levels by brassinosteroid treatment in the cbb1 (dwf1-6) and cbb3 mutants but are unaffected in the cbb2 mutant. These data indicate that brassinosteroids are essential for proper plant development and play an important role in the control of cell elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号