首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The repair response of Escherichia coli to hydrogen peroxide-induced DNA damage was investigated in intact and toluene-treated cells. Cellular DNA was cleaved after treatment by hydrogen peroxide as analyzed by alkaline sucrose sedimentation. The incision step did not require ATP or magnesium and was not inhibited by N-ethylmaleimide (NEM). An ATP-independent, magnesium-dependent incorporation of nucleotides was seen after the exposure of cells to hydrogen peroxide. This DNA repair synthesis was not inhibited by the addition of NEM or dithiothreitol. In dnaB(Ts) strain CRT266, which is thermolabile for DNA replication, normal levels of DNA synthesis were found at the restrictive temperature (43 degrees C), showing that DNA replication was not necessary for this DNA synthesis. Density gradient analysis also indicated that hydrogen peroxide inhibited DNA replication and stimulated repair synthesis. The subsequent reformation step required magnesium, did not require ATP, and was not inhibited by NEM, in agreement with the synthesis requirements. This suggests that DNA polymerase I was involved in the repair step. Furthermore, a strain defective in DNA polymerase I was unable to reform its DNA after peroxide treatment. Chemical cleavage of the DNA was shown by incision of supercoiled DNA with hydrogen peroxide in the presence of a low concentration of ferric chloride. These findings suggest that hydrogen peroxide directly incises DNA, causing damage which is repaired by an incision repair pathway that requires DNA polymerase I.  相似文献   

2.
It has often been suggested that the high molecular weight DNA polymerase alpha of eukaryotes plays a role in de novo replication of DNA, while the low molecular weight polymerase beta is involved in repair replication. Previous studies have shown that when diethylnitrosamine is fed in the diet to rats it causes after a few weeks an increase in de novo replication of DNA, which then returns to normal values. In contrast, repair replication may be expected to continue throughout the feeding period. Study of DNA polymerase activity in livers of animals during carcinogenesis showed that an increase in polymerase alpha occurred at the time of increased de novo replication, while there was a gradual increase in polymerase beta during the time diethylnitrosamine was present in the diet. When diethylnitrosamine treatment was stopped, there was a rapid drop in polymerase beta activity. These results support the view that the polymerase alpha is involved in DNA replication, that the polymerase beta functions in repair replication, and that the beta enzyme can be induced by chronic damage to DNA.  相似文献   

3.
Postreplication repair facilitates tolerance of DNA damage during replication, overcoming termination of replication at sites of DNA damage. A major post-replication repair pathway in mammalian cells is translesion synthesis, which is carried out by specialized polymerase(s), such as polymerase eta, and is identified by focus formation by the polymerase after irradiation with UVC light. The formation of these foci depends on RAD18, which ubiquitinates PCNA for the exchange of polymerases. To understand the initial processes in translesion synthesis, we have here analyzed the response to damage of RAD18 in human cells. We find that human RAD18 accumulates very rapidly and remains for a long period of time at sites of different types of DNA damage, including UVC light-induced lesions, and x-ray microbeam- and laser-induced single-strand breaks, in a cell cycle-independent manner. The accumulation of RAD18 at DNA damage is observed even when DNA replication is inhibited, and a small region containing a zinc finger motif located in the middle of RAD18 is essential and sufficient for the replication-independent damage accumulation. The zinc finger motif of RAD18 is not necessary for UV-induced polymerase eta focus formation, but another SAP (SAF-A/B, Acinus and PIAS) motif near the zinc finger is required. These data indicate that RAD18 responds to DNA damage in two distinct ways, one replication-dependent and one replication-independent, involving the SAP and zinc finger motifs, respectively.  相似文献   

4.
The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide.  相似文献   

5.
DNA damage and DNA repair in cultured human cells exposed to chromate   总被引:1,自引:0,他引:1  
DNA damage and DNA repair have been observed in cultured human skin fibroblasts exposed to potassium chromate but not to a chromic glycine complex. DNA repair synthesis (unscheduled incorporation of [3H]thymidine (TdR)) was measured in cells during or following exposure to chromate and was significant for chromate concentrations above 10(-6) M. Maximal DNA repair was observed at about 10(-4) M chromate. DNA repair capacity was found to be saturated at this concentration. Chromate was stable for at least 8 h in culture medium and produced approximately a linear increase in repair with duration of exposure. DNA damage as determined by alkaline sucrose gradient sedimentation was detected after treatment for 1.5 h with 5 . 10(-4) M chromate. Exposure to 10(-7) M chromate solution for 7 days inhibited colony formation while acute (1 h) treatment was toxic at 5 . 10(-6) M. The chromic glycine complex was toxic above 10(-3) M for a 1-week exposure but was not observably toxic after a 1-h treatment. These results indicate that chromate and not chromic compounds may be the carcinogenic form for man. The nature of the ultimate carcinogen is discussed. These findings illustrate the utility of the DNA repair technique to study the effects on human cells of inorganic carcinogens and mutagens.  相似文献   

6.
KB cells and L cells were treated with methylmethanesulfonate (MMS) or 4-nitroquinoline-1-oxide (4 NQO) and the resulting damage to DNA and its repair were examined by sedimentation in an alkaline sucrose gradient. The sedimentation profiles obtained were found to be the resultant of a complex interrelationship between drug dosage, duration of the lysis period and the repair capacity of the cells. A systematic study of these variables was made which led to a plausible and useful interpretation of the sedimentation profiles. Both drugs produce two kinds of DNA modifications which show up as a single-strand breaks but affect the sedimentation profile in characteristic ways. One of these modifications which is quite alkali-labile can be studied using a 30-min lysis period. The other modification is less alkali-labile and can be studied using a long lysis period. Both KB cells and L cells can repair the former type of damage but only KB cells can repair the latter type of damage.  相似文献   

7.
A biological reducing agent, sodium ascorbate, was used to modify both the damage induced by N-methyl-N′-nitro-N-nitrosoguanidine to mouse gastric mucosal cell DNA and the repair of that damage in vivo. Freshly-mixed carcinogen and sodium ascorbate enhanced DNA fragmentation as measured by shifts in alkaline sucrose gradient sedimentation profiles whereas incubation of the two compounds for a short period resulted in reduced DNA fragmentation. Furthermore, periodic administration of sodium ascorbate following stomach cell DNA damage with carcinogen inhibited DNA repair.  相似文献   

8.
The repair response of Escherichia coli to hydrogen peroxide has been examined in mutants which show increased sensitivity to this agent. Four mutants were found to show increased in vivo sensitivity to hydrogen peroxide compared with wild type. These mutants, in order of increasing sensitivity, were recA, polC, xthA, and polA. The polA mutants were the most sensitive, implying that DNA polymerase I is required for any repair of hydrogen peroxide damage. Measurement of repair synthesis after hydrogen peroxide treatment demonstrated normal levels for recA mutants, a small amount for xthA mutants, and none for polA mutants. This is consistent with exonuclease III being required for part of the repair synthesis seen, while DNA polymerase I is strictly required for all repair synthesis. Sedimentation analysis of cellular DNA after hydrogen peroxide treatment showed that reformation was absent in xthA, polA, and polC(Ts) strains but normal in a recA cell line. By use of a lambda phage carrying a recA-lacZ fusion, we found hydrogen peroxide does not induce the recA promoter. Our findings indicate two pathways of repair for hydrogen peroxide-induced DNA damage. One of these pathways would utilize exonuclease III, DNA polymerase III, and DNA polymerase I, while the other would be DNA polymerase I dependent. The RecA protein seems to have little or no direct function in either repair pathway.  相似文献   

9.
Chinese hamster V79 cells grown for 20 h in suspension culture form small clusters of cells (spheroids) which are more resistant to killing by ionizing radiation than V79 cells grown as monolayers. This resistance appears to be due to the greater capacity of cells grown in contact to repair radiation damage. Attempts to relate this "contact effect" to differences in DNA susceptibility or DNA repair capacity have provided conflicting results. Two techniques, alkaline sucrose gradient sedimentation and alkaline elution, show no difference in the amounts of radiation-induced DNA single-strand breakage or its repair between suspension or monolayer cells. However, using the alkali-unwinding assay, the rate of DNA unwinding is much slower for suspension cells than for monolayer cells. Interestingly, a decrease in salt concentration or in pH of the unwinding solution eliminates these differences in DNA unwinding kinetics. A fourth assay, sedimentation of nucleoids on neutral sucrose gradients, also shows a significant decrease in radiation damage produced in suspension compared to monolayer cultures. It is believed that this assay measures differences in DNA conformation (supercoiling) as well as differences in DNA strand breakage. We conclude from these four assays that the same number of DNA strand breaks/Gy is produced in monolayer and spheroid cells. However, changes in DNA conformation or packaging occur when cells are grown as spheroids, and these changes are responsible for reducing DNA damage by ionizing radiation.  相似文献   

10.
Synchronous Chinese hamster cells accumulated 125I-induced DNA damage in the G2 + M2 period at 4 °C. The position of the 125I within the nuclear DNA was varied by incorporating [125I]iododeoxyuridine at various times during the previous DNA replication period. When the initial cell inactivation efficiency was compared for damage accumulated in various regions of nuclear DNA, it was found that the efficiency of inactivation was least in early replicating DNA, and that it gradually increased, reaching a maximum during the fourth and fifth hours of the six-hour DNA replication period. Because the DNA that replicated during this maximum corresponds to that DNA which later forms centromeric and near-centromeric regions of the chromosomes, damage in centromeric region DNA may be critical in causing mammalian cell inactivation.  相似文献   

11.
Fibroblasts derived from patients with diseases affecting DNA repair processes, such as Xeroderma Pigmentosum (classical and variant), Fanconi's anemia, Bloom's syndrome, Ataxia Telangiectasica, Progeria and Werner's syndrome, were assayed for the three DNA polymerases. The specific activities of these enzymes were found within the limits observed in normal human fibroblasts. Also the sedimentation properties of the three polymerases were unaltered.  相似文献   

12.
Poly(ADP-ribosyl)ation is a cellular response to DNA strand breaks by which a large array of proteins becomes covalently modified for a brief period during the lifetime of the DNA breaks. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide after many types of DNA damage leads to a marked increase in DNA strand breakage, repair replication, cytogenetic damage, mutagenesis, and cell killing. It has been hypothesized that poly(ADP-ribose) polymerase may modify potentially degradative endogenous nucleases that can reduce cellular viability. Thus, in the presence of DNA strand breakage, the polymer would bind these enzymes to inhibit their activity. When synthesis of the polymerase is inhibited, the enzymes would act randomly to produce nonspecific damage in the DNA. We tested this hypothesis by electroporating restriction enzymes into human cells containing the shuttle vector pHAZE. Restriction enzymes cleave at specific recognition sequences in the lacZ target gene of pHAZE, and mutations result from rejoining errors at the cleavage sites. If the hypothesis were correct, enzyme-treated cells cultured with 3-aminobenzamide to inhibit synthesis of poly(ADP-ribose) polymers would result in a significant increase in mutations outside the restriction enzyme sites. The spectrum of mutations observed after electroporation of PvuII (which produces blunt-end double-strand breaks) or PvuI (which produces cohesive-end double-strand breaks) was similar in untreated and 3-aminobenzamide-treated cells. Thus, our results do not support the hypothesis that the increase in damage observed when poly(ADP-ribosyl)ation is inhibited is due to a chaotic, nonspecific attack on DNA by endogenous cellular nucleases.  相似文献   

13.
Oxidative damage due to free radicals generated during nitrosamine metabolism has been suggested as one of the major cause for the initiation of hepatocarcinogenesis. Lycopene, is a well known antioxidant and have promising preventive potentials, however the mechanism of action remain hypothetical and unclear. To investigate the involvement of lycopene extracted from tomatoes (LycT) against oxidative stress induced deleterious effect of N-nitrosodiethylamine (NDEA) on cellular macromolecules, female Balb/c mice were divided in four groups: Control, NDEA (cumulative dose of 200 mg NDEA/kg body weight injected intraperitoneally in 8 weeks), LycT (5 mg/kg body weight given orally on alternate days, throughout the study) and LycT + NDEA (co-administration of LycT and NDEA). NDEA treatment commenced after 2 weeks of LycT administration. At the end of NDEA exposure i.e., at 10th week, enhanced activities of hepatic phase I enzymes, levels of reactive oxygen species (ROS), lipid peroxidation (LPO) was observed in NDEA group which may have contributed in chromosomal aberrations, enhanced micronucleated cell score, membrane fluidity and serum liver marker enzymes. A significant decrease in enzymatic and non-enzymatic antioxidant system could delineate the mechanism behind such NDEA insults. LycT pre-treatment to NDEA challenged group showed lower chromosomal abnormalities, micronucleated cells score, ROS, LPO levels and liver enzymes. Lycopene aids in normalizing the membrane fluidity and enhancing the activity of antioxidant enzymes and reduced glutathione which could account for the reduced oxidative damage in LycT + NDEA group. It seemed that lycopene supplementation target multiple dys-regulated pathways during initiation of carcinogenesis. Thus, dietary supplementation with lycopene can serve as an alternate measure to intervene the initiation of carcinogenesis.  相似文献   

14.
Summary Unscheduled DNA synthesis (UDS) suggested a higher DNA repair capacity of X-irradiated rat thymic (T) cells when compared to splenic (S) cells (Tempel 1980). In the present investigations, damage and repair of DNA supercoiling was measured in T- and S-cells following X-irradiation in vitro by using the nucleoid sedimentation technique and a simplified low-shearing viscometric test. - X-irradiation resulted in a dose (0.6–19.2 Gy) - dependent reduction in sedimentation and viscosity of nucleoids. Within a post-irradiation period of 30–45 min after a challenge dose of 19.2 Gy, DNA repair was accompanied by an increase in nucleoid sedimentation and viscosity in T-cells by about 60 and 300, in S-cells by almost 40 and 100%, resp. The increase in nucleoid viscosity within a 30 min repair period could be reduced in a concentration-dependent manner by DNA polymerase - inhibitors and proteinase K. - The higher DNA repair capacity of T-cells as reflected by UDS is confirmed therefore by the nucleoid characteristics. Apart from this suggestion, measuring nucleoid viscosity may be considered as a sensitive, simple and rapid device to detect radiation-induced DNA supercoiling phenomena.  相似文献   

15.
The sensitivity responses of seven pso mutants of Saccharomyces cerevisiae towards the mutagens N-nitrosodiethylamine (NDEA), 1,2:7,8-diepoxyoctane (DEO), and 8-hydroxyquinoline (8HQ) further substantiated their allocation into two distinct groups: genes PSO1 (allelic to REV3), PSO2 (SNM1), PSO4 (PRP19), and PSO5 (RAD16) constitute one group in that they are involved in repair of damaged DNA or in RNA processing whereas genes PSO6 (ERG3) and PSO7 (COX11) are related to metabolic steps protecting from oxidative stress and thus form a second group, not responsible for DNA repair. PSO3 has not yet been molecularly characterized but its pleiotropic phenotype would allow its integration into either group. The first three PSO genes of the DNA repair group and PSO3, apart from being sensitive to photo-activated psoralens, have another common phenotype: they are also involved in error-prone DNA repair. While all mutants of the DNA repair group and pso3 were sensitive to DEO and NDEA the pso6 mutant revealed WT or near WT resistance to these mutagens. As expected, the repair-proficient pso7-1 and cox11-Delta mutant alleles conferred high sensitivity to NDEA, a chemical known to be metabolized via redox cycling that yields hydroxylamine radicals and reactive oxygen species. All pso mutants exhibited some sensitivity to 8HQ and again pso7-1 and cox11-Delta conferred the highest sensitivity to this drug. Double mutant snm1-Delta cox11-Delta exhibited additivity of 8HQ and NDEA sensitivities of the single mutants, indicating that two different repair/recovery systems are involved in survival. DEO sensitivity of the double mutant was equal or less than that of the single snm1-Delta mutant. In order to determine if there was oxidative damage to nucleotide bases by these drugs we employed an established bacterial test with and without metabolic activation. After S9-mix biotransformation, NDEA and to a lesser extent 8HQ, lead to significantly higher mutagenesis in an Escherichia coli tester strain WP2-IC203 as compared to WP2, whereas DEO-induced mutagenicity remained unchanged.  相似文献   

16.
HeLa S3 cells growing in suspension have been used to investigate possible mechanisms underlying the inhibitory action of hyperthermia (44 degrees C) on the repair of DNA strand breaks as caused by a 6-Gy X-irradiation treatment. The role of hyperthermic inactivation of DNA polymerase alpha was investigated using the specific DNA polymerase alpha inhibitor, aphidicolin. It was found that both heat and aphidicolin (greater than or equal to 2 micrograms ml-1) could decrease DNA repair rates in a dose-dependent way. When the applications of heat and aphidicolin were combined, each at nonmaximal doses, no full additivity in effects was observed on DNA repair rates. When the heat and radiation treatment were separated in time by postheat incubation at 37 degrees C, restoration to normal repair kinetics was observed within 8 h after hyperthermia. When heat was combined with aphidicolin addition, restoration of the aphidicolin effect to control level was also observed about 8 h after hyperthermia. It is suggested that although DNA polymerase alpha seems to be involved in the repair of X-ray-induced DNA damage, and although this enzyme is partially inactivated by heat, other forms of heat damage have to be taken into account to explain the observed repair inhibition.  相似文献   

17.
The electroporation of restriction enzymes into mammalian cells results in DNA double-strand breaks that can lead to chromosome aberrations. Four chemicals known to interfere with cellular responses to DNA damage were investigated for their effects on chromosome aberrations induced by AluI and Sau3AI; in addition, the number of DNA double-strand breaks at various times after enzyme treatment was determined by pulsed-field gel electrophoresis (PFGE). The poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide (3AB) dramatically increased the yield of exchanges and deletions and caused a small but transitory increase in the yield of double-strand breaks induced by the enzymes. 1-beta-D-Arabinofuranosylcytosine, which can inhibit DNA repair either by direct action on DNA polymerases alpha and delta or by incorporation into DNA, potentiated aberration induction but to a lesser extent than 3AB and did not affect the amount of DNA double-strand breakage. Aphidicolin, which inhibits polymerases alpha and delta, had no effect on AluI-induced aberrations but did increase the aberration yield induced by Sau3AI. The postreplication repair inhibitor caffeine had no effect on aberration yields induced by either enzyme. Neither aphidicolin nor caffeine modulated the amount of DNA double-strand breakage as measured by PFGE. These data implicate poly(ADP-ribosyl)ation and polymerases alpha and delta as important components of the cellular processes required for the normal repair of DNA double-strand breaks with blunt or cohesive ends. Comparison of these data with the effect of inhibitors on the frequency of X-ray-induced aberrations leads us to the conclusion that X-ray-induced aberrations can result from the misjoining or nonrejoining of double-strand breaks, particularly breaks with cohesive ends, but that this process accounts for only a portion of the induced aberrations.  相似文献   

18.
19.
Inhibitors of (a) DNA topoisomerases (novobiocin and nalidixic acid) and of (b) eukaryotic DNA polymerases α (cytosine arabinoside) and β (dideoxythymidine) blocked different steps of DNA repair, demonstrated by the effects of the inhibitors on the relaxation of supercoiled DNA nucleoids following treatment of human cell cultures with ultraviolet light (1–3 J/m2) or MNNG (5 or 20 μM) and the subsequent restoration of the supercoiled nucleoids during repair incubation. Changes in the supercoiling of nucleoid DNA were assayed by analysis of their sedimentation profiles in 15–30% neutral sucrose gradients. Inhibition of repair by novobiocin was partially reversible; upon its removal from the culture medium, the nucleoid DNA of repairing cells became relaxed. The DNA polymerase inhibitors allowed the initial relaxation of DNA after treatment of the cells with ultraviolet or MNNG but delayed the regeneration of rapidly-sedimenting (supercoiled) nucleoid DNA for 2–4 h. Dideoxythymidine (1 mM) was more effective than cytosine arabinoside (1 μM) in producing this delay, but neither inhibitor by itself blocked repair permanently. Incubation of ultraviolet-irradiated cells with 1 μM cytosine arabinoside plus 1 mM dideoxythymidine blocked the completion of repair for 24 h, whereas incubation with 10 μM cytosine arabinoside or 5 mM dideoxythymidine produced only temporary repair delays of 2–4 h. Thus, it is likely that the two DNA polymerase inhibitors act upon separate targets and that both targets are involved in repair. It is concluded from these and from previous studies that (1) the DNA repair-sensitive target of novobiocin and nalidixic acid in vivo is not a DNA polymerase, but, rather, a DNA topoisomerase; (2) this target affects an initial step of DNA repair leading to the relaxation of supercoiled DNA; (3) the DNA polymerization step of repair may involve both α- and β-type DNA polymerases; and (4) in repair, one type of DNA polymerase may substitute for another.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号