首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A balance between proliferation and cell death is critical for achieving desirable high cell densities in mammalian cell culture. In this study, we evaluate a recently discovered anti-apoptotic gene, aven, and examine its effectiveness alone and in combination with a member of the Bcl-2 family, bcl-xL. The commercially popular cell line, Chinese hamster ovary (CHO), was genetically modified to constitutively express aven, bcl-xL, and the two genes in combination. Cells were exposed to several model insults that simulate severe bioreactor environments, including serum deprivation, spent medium, and Sindbis virus infection, as well as staurosporine, a known chemical inducer of apoptosis. CHO cells exhibited DNA fragmentation, a hallmark of apoptosis, after exposure to these model insults. After exposure to serum deprivation, 4- and 5-day spent medium, and staurosporine, cells expressing Aven provided limited protection against cell death when compared with the protection afforded by cells expressing Bcl-xL alone. However, the highest survival levels for all insults were achieved when Aven was expressed in combination with Bcl-xL. In fact, Aven appeared to act synergistically to enhance the protective function of Bcl-xL for several insults, because the protective function of the two genes expressed together in one cell line often exceeded the additive protective levels of each anti-apoptosis gene expressed alone. Surprisingly, Aven expression provided a mildly pro-apoptotic response in CHO isolates infected with Sindbis virus. However, CHO cells expressing both Bcl-xL and Aven showed protection against Sindbis virus infection due to the inhibitory properties of the bcl-xL anti-apoptosis gene. This study shows that combinatorial anti-apoptosis cell engineering strategies may be the most effective mechanisms for providing extended protection against cell death in mammalian cell culture.  相似文献   

2.
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death may occur from necrosis but is more commonly associated with apoptosis. During the process of programmed cell death or apoptosis, caspases become activated and cause a cascade of events that eventually destroy the cell. XIAP is the most potent caspase inhibitor encoded in the mammalian genome. The effectiveness of XIAP and its deletion mutants was examined in two cell lines commonly utilized in commercial bioreactors: Chinese hamster ovary (CHO) and 293 human embryonic kidney (293 HEK) cells. CHO cells undergo apoptosis as a result of various insults, including Sindbis virus infection and serum deprivation. In this study, we demonstrate that 293 HEK cells undergo apoptosis during Sindbis virus infection and exposure to the toxins, etoposide and cisplatin. Two deletion mutants of XIAP were created; one containing three tandem baculovirus iap repeat (BIR) domains and the other containing only the C-terminal RING domain, lacking the BIRs. Viability studies were performed for cells expressing each mutant and the wild-type protein on transiently transfected cells, as stable pools, or as stable clonal cell populations after induction of apoptosis by serum deprivation, Sindbis virus infection, etoposide, and cisplatin treatment. Expression of the wild-type XIAP inhibited apoptosis significantly; however, the XIAP mutant containing the three BIRs provided equivalent or improved levels of apoptosis inhibition in all cases. Expression of the RING domain offered no protection and was pro-apoptotic in transient expression experiments. With the aid of an N-terminal YFP fusion to each protein, distribution within the cell was visualized, and the wild-type and mutants showed differing intracellular accumulation patterns. While the wild-type XIAP protein accumulated primarily in aggregates in the cytosol, the RING mutant was enriched in the nucleus. In contrast, the deletion mutant containing the three BIRs was distributed evenly throughout the cytosol. Thus, protein engineering of the XIAP protein can be used to alter the intracellular distribution pattern and improve the ability of this caspase inhibitor to protect against apoptosis for two mammalian cell lines.  相似文献   

3.
Viral expression systems offer the ability to generate high levels of a particular protein within a relatively short period of time. In particular, alphavirus constructs based on Sindbis virus (SV) and Semliki Forest virus (SFV) are promising vehicles as they are cytoplasmic vectors with the potential for high expression levels. Two such alphavirus vectors were utilized during the current study to infect two commercially relevant cell lines, baby hamster kidney (BHK) and Chinese hamster ovary (CHO); the first was a fully competent SV derivative carrying the gene for chloramphenicol acetyltransferase (dsSV-CAT), while the second was a replication deficient SFV construct containing the human interleukin-12 (IL-12) p35 and p40 genes (SFV-IL-12). Since infection with these vectors induced apoptosis in both cell lines, the present effort was dedicated to determining the ability of anti-apoptosis genes to limit the cell death associated with these virus constructs. Infection with the dsSV-CAT vector resulted in the rapid death of BHK and CHO cells within 4 days, a phenomenon which was considerably delayed by stably overexpressing bcl-2 or bcl-x(L). In fact, cellular lifespans were doubled in both BHK-bcl2 and CHO-bclx(L) cells relative to the parental cell lines. Furthermore, the presence of these gene products provided increases of up to 2-fold in recombinant CAT production. Overexpression of bcl-2 and bcl-x(L) also altered the response of these cells upon infection with SFV-IL-12. While the parental cell lines were completely nonviable within 1 week, the BHK-bcl2, BHK-bclx(L), and CHO-bclx(L) cells each recovered from the infection, resuming exponential growth and regaining viabilities of over 90% by 9 days post-infection. Total IL-12 productivities were nearly doubled by Bcl-2 and Bcl-x(L) in the CHO cells, although this effect was apparently cell-line specific, as the native BHK cells were able to secrete more IL-12 than either of its transfected derivatives. Regardless, the presence of the anti-apoptosis genes allowed the production of IL-12 to be maintained, albeit at low levels, from each of the cell lines for the duration of the culture process. Therefore, overexpression of bcl-2 family members can have a significant impact on culture viabilities and recombinant protein production during alphavirus infections of mammalian cells.  相似文献   

4.
The overexpression of bcl-2 and its homologues is a widely used strategy to inhibit apoptosis in mammalian cell culture systems. In this study, we have evaluated the Bcl-2 homologue, Bcl-x(L) and compared its effectiveness to a Bcl-x(L) mutant lacking most of the non-conserved unstructured loop domain, Bcl-x(L)Delta (deletion of amino acids 26 through 83). The cell line, Chinese hamster ovary (CHO), was genetically modified to express constitutively Bcl-x(L) or the Bcl-x(L) variant and subjected to model apoptotic insults including Sindbis virus (SV) infection, gradual serum withdrawal, and serum deprivation. When cells were engineered to overexpress Bcl-x(L)Delta, cell death due to the SV was inhibited, and Bcl-x(L)Delta provided comparable protection to the wild-type Bcl-x(L) even though expression levels were much lower for the mutant. Furthermore, the cells expressing Bcl-x(L)Delta continued to proliferate following infection while CHO-bcl-x(L) ceased proliferation immediately following infection. As a result, total production of a heterologous protein encoded on the SV was highest in cell lines expressing Bcl-x(L)Delta. Cells expressing the variant Bcl-x(L) also continued to proliferate and showed increased viable cell numbers following gradual serum withdrawal. In contrast, wild-type Bcl-x(L) expressing CHO cells were found to arrest growth but maintain viability following serum withdrawal. Interestingly, CHO cells expressing Bcl-x(L)Delta were also able to recover and return to rapid growth rates much faster than either the wild-type CHO-bcl-x(L) or CHO following the replenishment of fresh complete medium containing 10% FBS. Confocal imaging of yellow fluorescent protein (YFP) fused to the N terminus of Bcl-x(L) and Bcl-x(L)Delta indicated dense aggregates of the Bcl-x(L)Delta while the wild-type protein was distributed throughout the cell in a manner resembling transmembrane localization. As an alternative to complete removal of the loop domain, Bcl-x(L) variants were created in which aspartate residues containing potential caspase recognition sites within the loop domain of Bcl-x(L) were removed. Cell populations expressing various Bcl-x(L)-Asp mutants were exposed to an apoptotic spent medium stimulus, and the cells expressing these Bcl-x(L) variants provided increased viabilities as compared to cells containing wild-type Bcl-x(L) protein. These studies indicate that modification of anti-apoptotic genes can affect multiple cellular properties including response to apoptotic stimuli and cell growth. This knowledge can be valuable in the design of improved apoptosis inhibitors for biotechnology applications.  相似文献   

5.
A number of bioreactor configurations have been developed for the manufacture of products from mammalian cell hosts. Even in the most efficient of these, however, problems such as nutrient exhaustion, growth factor deprivation, and toxin accumulations may arise. Consequently, the current effort focused on the feasibility of overexpressing anti-apoptosis genes in baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cells as a means of limiting cell death upon exposure to three such insults. Extended periods of glucose deprivation, serum withdrawal, and treatment with ammonium chloride each caused significant damage, often apoptotic in nature, to BHK and CHO cells, typically rendering cultures completely nonviable. The overexpression of bcl-2 and bcl-x(L), however, was able to abrogate the cell death in BHK cultures, though to varying degrees. For instance, the presence of Bcl-2, which did little to suppress apoptosis upon glucose deprivation, significantly improved the viabilities of these cells during serum withdrawal. In contrast, bcl-x(L) overexpression provided BHK cells with enhanced protection in the absence of glucose, allowing cultures to remain viable throughout the entire three week study. CHO cultures, on the other hand, displayed similar trends in survival in response to both glucose and serum deprivation. During these studies, Bcl-x(L) was consistently able to afford cells the highest degree of protection, though Bcl-2 also enhanced culture viabilities and viable numbers. Death suppression following exposure to 50 mM ammonium chloride was observed to a limited extent in both BHK and CHO cells overexpressing bcl-2 and bcl-x(L). However, even during such harsh treatment, Bcl-x(L) was able to enhance the survival of both cultures, providing CHO cells with viable numbers that were nearly 20-fold that of the controls after five days of exposure. Furthermore, the extensions in cell survival provided by the anti-apoptosis gene products enabled the recovery of many of the cultures during rescue attempts in which the death-inducing stimulus was removed. Clearly, engineering cells to better withstand and recover from the insults common during the large scale cultivation of mammalian cells has a number of potential applications in the biopharmaceutical industries where cell death can limit culture productivities.  相似文献   

6.
Apoptosis is now recognized as a significant problem in mammalian cell culture. Therefore, in this study, a single gene and multigene approach to inhibit apoptosis has been examined. Stable Chinese hamster ovary (CHO) cell lines were generated to overexpress different single, dual, and triple combinations of three apoptosis inhibitor genes. Two upstream inhibitors involved in the mitochondrial pathway, Bcl-X(L) and Aven, were expressed in addition to a downstream inhibitor of caspases. The caspase inhibitor, a variant of XIAP containing only the caspase inhibitory BIR domains (XIAP-BIRs), has been shown previously to enhance viabilities in mammalian cultures. Stable clonal cell lines were generated and tested for three apoptotic insults: Sindbis virus infection, the chemical reagent etoposide, and spent medium. For all single gene experiments, the Bcl-X(L)-containing cell lines provided superior protection to either the Aven- or XIAP-BIRs-containing cell lines following initial exposure to the insults. However, the cell lines expressing two or more anti-apoptosis proteins were more effective at inhibiting cell death than those expressing just one anti-apoptosis gene. The cell lines overexpressing Bcl-X(L) in combination with XIAP-BIRs were especially effective in delaying cell death for all three apoptotic insults. Expression of all three anti-apoptosis genes in concert was only slightly more effective than using Bcl-X(L) and XIAP-BIRs for some insults. During exposure to spent medium, CHO-BIRS + Aven + BclX(L) was the best inhibitor of apoptosis (IAP) initially, whereas CHO-BIRs + BclX(L) was particularly effective at later times of the experiment. In conclusion, the utilization of a mitochondrial dysfunction inhibitor used in combination with a caspase inhibitor was more effective in thwarting the progression of apoptosis than either inhibitor expressed individually. Thus, the concurrent expression of multiple apoptosis inhibitors may be the most effective strategy to increase survival of mammalian cells in culture.  相似文献   

7.
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.  相似文献   

8.
E1A+ras-transformed rodent fibroblasts are unable to be arrested in the cell cycle and die by apoptosis in response to cytostatics, ionizing radiation (IR), or serum withdrawal. Overexpression of the human antiapoptotic gene bcl-2 suppresses apoptosis and induces reversible cell cycle arrest after IR or serum withdrawal and cell senescence after adriamycin treatment. Bcl-2-sustained adriamycin-induced cell senescence requires p38 MAPK, since the knockout of p38 MAPK abrogated anti-apoptotic and senescence-inducing effects of Bcl-2 in adriamycin-treated cells. Moreover, resistance to apoptosis and cell cycle arrest were not observed in p38 -/- E1A+ras+bcl-2-transformants following IR or serum deprivation. However, the pro-apoptotic effect of nocodazole in E1A+ras-transformed cells can not be prevented by Bcl-2 overexpression independently of the presence of p38 MAPK. These results allow us to conclude that p38 is necessary for Bcl-2-induced inhibition of apoptosis, induction of cell cycle arrest and accelerated senescence after DNA damage and serum starvation, but not after nocodazole treatment.  相似文献   

9.
BACKGROUND: Some forms of chemoresistance in leukemia may start from failure of tumour cells to successfully undergo apoptosis and Bcl-2 may play a role in this defect. Therefore, we evaluated the Bcl-2 content and synthesis in relation with the apoptotic potential in leukemic cell lines after anthracycline treatment. METHODS: U937, HL60, and K562 cells and their drug resistant (DR) variants were treated with varying concentrations of Idarubicin (IDA). Apoptosis was evaluated by fluorescence microscopy after acridine orange staining. Bcl-2 and Bax content were evaluated either by flow cytometry after indirect immunolabelling or by Western blot. RESULTS: High Bcl-2 contents were not related to a poor ability to undergo apoptosis in U937, HL60, K562 and their DR variants. IDA induced a concentration-dependent increase in Bcl-2 content in all cell lines as long as they do not perform apoptosis. Enhanced Bcl-2 expression was inhibited by cycloheximide, actinomycin D, or antisense oligonucleotide directed against bcl-2 mRNA. Bcl-2 expression was also increased in the resistant U937 variant after serum deprivation or C2-ceramide treatment. The synthesis of Bcl-2 led to an increased Bcl-2/Bax ratio solely in the cells with an apoptosis-resistance phenotype. CONCLUSIONS: These data suggest that exposure to IDA induces Bcl-2 expression in leukemic cell lines, and that this mechanism could contribute to apoptosis resistance and participate in the acquisition of chemoresistance. They also confirm that the evolution of the Bcl-2/Bax ratio reflects apoptotic ability better than the steady state level of Bcl-2 expression.  相似文献   

10.
Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures   总被引:4,自引:0,他引:4  
The influence of Bcl-2 expression on the suppression of apoptosis during the cultivation of an NS0 cell line expressing a chimeric antibody was investigated. Following selection of transfectants in medium containing G418, Western analysis revealed evidence of some up-regulation of endogenous Bcl-2 expression even in the control vector transfectants. Cultivation of the two cell lines in suspension batch cultures clearly demonstrated the enhanced robustness of the bcl-2 vector transfected cells. Suppression of apoptosis resulted in an approximately 20% increase in maximum viable cell number, and a doubling in culture duration compared to the control transfected cells. However, despite the significant affect on viability, Bcl-2 expression did not result in an increase in final antibody titre in comparison with the control cell line. Exposure of cells to various nutrient limited conditions further emphasised the influence of Bcl-2 on cell survival. After 3 days of exposure to serum, glucose, glutamate and asparagine deprivation, the viable cell number and viability were significantly higher in the bcl-2 transfected cell line. When control cells were deprived of all amino acids, there was a complete loss of viability and viable cell number within 3 days. By contrast, the bcl-2 transfected cell line retained greater than 75% of the initial viable cell number and about 70% viability. In response to exposure to 8 mM thymidine (a cytostatic agent) the control cell line underwent complete loss of viability and viable cell number after 6 days. This compared with 18 days for complete loss of viability in the bcl-2 transfected cell line. As under batch culture conditions, there was no difference between the two cell lines in final antibody titre, which indicated that MAb synthesis is limited by nutrient availability during the latter stages of culture in both cases. When fed batch cultures were carried out using a concentrated essential amino acid feed, the bcl-2 cell line exhibited a 60% increase in maximum viable cell number and a 50% increase in culture duration, when compared to the control cell line. Moreover, the bcl-2 cell line exhibited a greater than 40% increase in maximum antibody titre.  相似文献   

11.
Selected antiapoptotic genes were expressed in baker's yeast (Saccharomyces cerevisiae) to evaluate cytoprotective effects during oxidative stress. When exposed to treatments resulting in the generation of reactive oxygen species (ROS), including H(2)O(2), menadione, or heat shock, wild-type yeast died and exhibited apoptotic-like characteristics, consistent with previous studies. Yeast strains were generated expressing nematode ced-9, human bcl-2, or chicken bcl-xl genes. These transformants tolerated a range of oxidative stresses, did not display features associated with apoptosis, and remained viable under conditions that were lethal to wild-type yeast. Yeast strains expressing a mutant antiapoptotic gene (bcl-2 deltaalpha 5-6), known to be nonfunctional in mammalian cells, were unable to tolerate any of the ROS-generating insults. These data are the first report showing CED-9 has cytoprotective effects against oxidative stress, and add CED-9 to the list of Bcl-2 protein family members that modulate ROS-mediated programmed cell death. In addition, these data indicate that Bcl-2 family members protect wild-type yeast from physiological stresses. Taken together, these data support the concept of the broad evolutionary conservation and functional similarity of the apoptotic processes in eukaryotic organisms.  相似文献   

12.
bcl-2, the prototypic cellular antiapoptotic gene, decreases Sindbis virus replication and Sindbis virus-induced apoptosis in mouse brains, resulting in protection against lethal encephalitis. To investigate potential mechanisms by which Bcl-2 protects against central nervous system Sindbis virus infection, we performed a yeast two-hybrid screen to identify Bcl-2-interacting gene products in an adult mouse brain library. We identified a novel 60-kDa coiled-coil protein, Beclin, which we confirmed interacts with Bcl-2 in mammalian cells, using fluorescence resonance energy transfer microscopy. To examine the role of Beclin in Sindbis virus pathogenesis, we constructed recombinant Sindbis virus chimeras that express full-length human Beclin (SIN/beclin), Beclin lacking the putative Bcl-2-binding domain (SIN/beclinΔBcl-2BD), or Beclin containing a premature stop codon near the 5′ terminus (SIN/beclinstop). The survival of mice infected with SIN/beclin was significantly higher (71%) than the survival of mice infected with SIN/beclinΔBcl-2BD (9%) or SIN/beclinstop (7%) (P < 0.001). The brains of mice infected with SIN/beclin had fewer Sindbis virus RNA-positive cells, fewer apoptotic cells, and lower viral titers than the brains of mice infected with SIN/beclinΔBcl-2BD or SIN/beclinstop. These findings demonstrate that Beclin is a novel Bcl-2-interacting cellular protein that may play a role in antiviral host defense.  相似文献   

13.
Mutations in Cu/Zn-superoxide dismutase (SOD1) are associated with some cases of familial amyotrophic lateral sclerosis (ALS). We overexpressed Bcl-2, wild-type SOD1 or mutant SOD1s (G37R and G85R) in NT-2 and SK-N-MC cells. Overexpression of Bcl-2 rendered cells more resistant to apoptosis induced by serum withdrawal, H2O2 or 4-hydroxy-2-trans-nonenal (HNE). Overexpression of Bcl-2 had little effect on levels of protein carbonyls, lipid peroxidation, 8-hydroxyguanine (8-OHG) or 3-nitrotyrosine. Serum withdrawal or H2O2 raised levels of protein carbonyls, lipid peroxidation, 8-OHG and 3-nitrotyrosine, changes that were attenuated in cells overexpressing Bcl-2. Overexpression of either SOD1 mutant tended to increase levels of lipid peroxidation, protein carbonyls, and 3-nitrotyrosine and accelerated viability loss induced by serum withdrawal, H2O2 or HNE, accompanied by greater rises in oxidative damage parameters. The effects of mutant SOD1s were attenuated by Bcl-2. By contrast, expression of wild-type SOD1 rendered cells more resistant to loss of viability induced by serum deprivation, HNE or H2O2. The levels of lipid peroxidation in wild-type SOD1 transfectants were elevated. Overexpression of mutant SOD1s makes cells more predisposed to undergo apoptosis in response to several insults. Our cellular systems appear to mimic events in patients with ALS or transgenic mice overexpressing mutant SOD1.  相似文献   

14.
Infection by Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes acute encephalitis in humans and induces severe cytopathic effects in different types of cultured cells. This study attempted to determine whether apoptosis contributes to virus-induced cell death in a culture system by characterizing JEV lytic infection in baby hamster kidney BHK-21 cells, murine neuroblastoma N18 cells, and human neuronal progenitor NT2 cells. According to our results, the replication of JEV, and not the UV-inactivated virions per se, triggered apoptosis in these cell lines, as evidenced by nuclear condensation, DNA fragmentation ladder, and in situ end labeling of DNA strand breaks with terminal transferase (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay). Different strains of JEV, regardless of whether they are neurovirulent to mice, could induce apoptosis of the infected cells. In addition, enforced expression of the human protooncogene bcl-2 in BHK-21 cells, which did not influence virus production, appeared to delay the process of JEV-induced apoptosis, despite the fact that most infected cells were inevitably killed after prolonged cultures. However, Bcl-2 proteins expressed in N18 cells failed to block JEV-induced apoptosis, although they did prevent Sindbis virus-induced apoptosis from occurring in the same cells. This finding suggests that these two viruses may utilize similar but not identical mechanisms to kill their infected cells. The results presented here thus demonstrate that apoptosis can be a general mechanism for JEV-induced cell death and that enforced bcl-2 expression may be inadequate in protecting all cell types from JEV-induced apoptosis in cell cultures.  相似文献   

15.
Activation of the cell surface receptor Fas/APO-1 (CD95) induces apoptosis in lymphocytes and regulates immune responses. The cytoplasmic membrane protein Bcl-2 inhibits lymphocyte killing by diverse cytotoxic agents, but we found it provided little protection against Fas/APO-1-transduced apoptosis in B lymphoid cell lines, thymocytes and activated T cells. In contrast, the cowpox virus protease inhibitor CrmA blocked Fas/APO-1-transduced apoptosis, but did not affect cell death induced by gamma-radiation or serum deprivation. Signalling through Fas/APO-1 did not down-regulate Bcl-2 or induce its antagonists Bax and Bcl-xS. In Fas/APO-1-deficient lpr mice, Bcl-2 transgenes markedly augmented the survival of antigen-activated T cells and the abnormal accumulation of lymphocytes (although they did not interfere with deletion of auto-reactive cells in the thymus). These data raise the possibility that Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis.  相似文献   

16.
17.
Cardiac fibroblasts play an essential role in the physiology of the heart. These produce extracellular matrix proteins and synthesize angiogenic and cardioprotective factors. Although fibroblasts of cardiac origin are known to be resistant to apoptosis and to remain metabolically active in situations compromising cell survival, the underlying mechanisms are unknown. Here, we report that cardiac fibroblasts were more resistant than dermal or pulmonary fibroblasts to mitochondria-dependent cell death. Cytochrome c release was blocked in cardiac fibroblasts but not in dermal fibroblasts treated with staurosporine, etoposide, serum deprivation, or simulated ischemia, precluding caspase-3 activation and DNA fragmentation. Resistance to apoptosis of cardiac fibroblasts correlated with the expression of the anti-apoptotic protein Bcl-2, whereas skin and lung fibroblasts did not express detectable levels of this protein. Bcl-x(L,) Bax, and Bak were expressed at similar levels in cardiac, dermal, and lung fibroblasts. In addition, the death of cardiac fibroblasts during hypoxia was not associated with the cleavage of Bid but rather with Bcl-2 disappearance, suggesting the requirement of the mitochondrial apoptotic machinery to execute death receptor-induced programmed cell death. Knockdown of bcl-2 expression by siRNA in cardiac fibroblasts increased their apoptotic response to staurosporine, serum, and glucose deprivation and to simulated ischemia. Moreover, dermal fibroblasts overexpressing Bcl-2 achieved a similar level of resistance to these stimuli as cardiac fibroblasts. Thus, our data demonstrate that Bcl-2 is an important effector of heart fibroblast resistance to apoptosis and highlight a probable mechanism for promoting survival advantage in fibroblasts of cardiac origin.  相似文献   

18.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type virus blocks the execution of the cell death program triggered by expression of viral genes, by the Fas and tumor necrosis factor pathways, or by nonspecific stress agents. In particular, an earlier report from this laboratory showed that the mutant virus d120 lacking the genes encoding infected cell protein 4 (ICP4), the major regulatory protein of the virus, induces a caspase-3-independent pathway of apoptosis in human SK-N-SH cells. Here we report that the pathway of apoptosis induced by the d120 mutant in human HEp-2 cells is caspase dependent. Specifically, in HEp-2 cells infected with d120, (i) a broad-range inhibitor of caspase activity, z-vad-FMK, efficiently blocked DNA fragmentation, (ii) cytochrome c was released into the cytoplasm, (iii) caspase-3 was activated inasmuch as poly(ADP-ribose) polymerase was cleaved, and (iv) chromatin condensation and fragmentation of cellular DNA were observed. In parallel studies, HEp-2 cells were transfected with a plasmid encoding human Bcl-2 and a clone (VAX-3) expressing high levels of Bcl-2 was selected. This report shows that Bcl-2 blocked all of the manifestations associated with programmed cell death caused by infection with the d120 mutant. Consistent with their resistance to programmed cell death, VAX-3 cells overproduced infected cell protein 0 (ICP0). An unexpected observation was that ICP0 encoded by the d120 mutant accumulated late in infection in small, quasi-uniform vesicle-like structures in all cell lines tested. Immunofluorescence-based colocalization studies indicated that these structures were not mitochondria or components of the endoplasmic reticulum or the late endosomal compartment. These studies affirm the conclusion that HSV can induce programmed cell death at multiple steps in the course of its replication, that the d120 mutant can induce both caspase-dependent and -independent pathways of programmed cell death, and that virus-induced stimuli of programmed cell death may differ with respect to the pathway that they activate.  相似文献   

19.
20.
Bcl-2 is the founding member of a family of proteins that influence apoptosis. During kidney development bcl-2 not only acts as a survival factor, but may also impact cell adhesive mechanisms and by extension branching morphogenesis. The interrelationship between cell adhesion, migration and apoptosis, important during development, is poorly understood. Here we examined the impact lack of bcl-2, an inhibitor of apoptosis, has on ureteric bud (UB) cell adhesion, migration, and branching morphogenesis. Bcl-2 -/- UB cells demonstrated increased cell migration, increased cell invasion and decreased adhesion to vitronectin and fibronectin compared with wild-type cells. Bcl-2 +/+ UB cells readily branched in collagen gel and Matrigel while bcl-2 -/- UB cells did not undergo significant branching in either matrix. Re-expression of bcl-2 in bcl-2 -/- UB cells restored their ability to undergo branching morphogenesis in Matrigel. Consistent with our in vitro data, we show that in the absence of bcl-2, embryonic kidneys undergo decreased UB branching. We observed decreased numbers of UB branch points, UB branch tips and a decreased distance to the first UB branch point in the absence of bcl-2. The alterations in bcl-2 -/- UB cell adhesion and migration was also associated with a significant alteration in expression of a number of extracellular matrix proteins. Bcl-2 -/- UB cells exhibited increased fibronectin expression and decreased thrombospondin-1 and osteopontin expression. Taken together, these data suggest that bcl-2 is required for the proper regulation of cell adhesive and migratory mechanisms, perhaps through modulation of the cellular microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号