首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
UVB mutagenesis is characterized by an abundance of C --> T and 5-methylcytosine --> T transitions at dipyrimidine sequences. It is not known how these mutations might arise. One hypothesis is that UV-induced mutations occur only after deamination of the cytosine or 5-methylcytosine within the pyrimidine dimer. It is not clear how methylation of cytosines at the 5-position influences deamination and how this affects mutagenesis. We have now conducted experiments with a CpG-methylated supF shuttle vector that was irradiated with UVB and then incubated at 37 degrees C to allow time for deamination before passage through a human cell line to establish mutations. This led to a significantly increased frequency of CC --> TT mutations and of transition mutations at 5'-PymCG-3' sequences. A spectrum of deaminated cis-syn cyclobutane pyrimidine dimers in the supF gene was determined using the mismatch glycosylase activities of MBD4 protein in combination with ligation-mediated PCR. Methylation at the C-5 position promoted the deamination of cytosines within cis-syn cyclobutane pyrimidine dimers, and these two events combined led to a significantly increased frequency of UVB-induced transition mutations at 5'-PymCG-3' sequences. Under these conditions, the majority of all supF mutations were transition mutations at 5'-PymCG-3', and they clustered at several mutational hot spots. Exactly these types of mutations are frequently observed in the p53 gene of nonmelanoma skin tumors. This particular mutagenic pathway may become prevalent under conditions of inefficient DNA repair and slow proliferation of cells in the human epidermis.  相似文献   

2.
Summary Cells defective in uracil-DNA glycosylase (ung:: Tn10) were used in two ways to reveal differences in select point mutations (GC to AT transitions) within the seven-tRNA operon of E. coli. The mutations were indicated as de novo or converted glutamine tRNA suppressor mutations in the genes glnU and/or glnV: (1) the kinetics of photoenzymatic monomerization of pyrimidine dimers quantitated by ung-dependent UV mutagenesis indicated more rapid repair of dimers at sites for converted suppressor mutation than of dimers at sites for de novo suppressor mutation, and (2) spontaneous deamination of cytosine was considerably more frequent at sites for converted suppressor mutation than at sites for de novo suppressor mutation. To explain these results we suggest the physical structure of the DNA in vivo is different at different sites in the seven-tRNA operon. The non-transcribed strand including specifically the anticodon region of the site for converted suppressor mutation may frequently be looped out in a single strand so that a T=C dimer is more accessible to DNA photolyase or a free cytosine residue of non-irradiated DNA is in an aqueous environment conducive to deamination. In addition, we analysed the spontaneous de novo suppressor mutation data to determine an estimate for the in vivo rate of cytosine deamination in double strand DNA of 3.2×1013/sec.  相似文献   

3.
Summary Mutagenesis by ultraviolet light was studied in a strain of E. coli ung, which lacks uracil-DNA glycosylase activity. Mutation potentiated by UV in cells already induced by nalidixic acid treatment was still photoreversible suggesting that pyrimidine dimers act directly as premutational photoproducts. Secondly, irradiated cells were held in buffer at 48°C for 0 to 135 min to allow for deamination of cytosines in pyrimidine dimers. The mutation frequencies for class 2 de novo suppressor mutation, for class 2 converted suppressor mutation and for backmutation were individually determined, before and after photoreactivation, as a function of this thermal treatment. Backmutation remained sensitive to photoreactivation throughout the treatment but de novo and converted suppressor mutations rapidly developed resistance to photoreactivation. This resistance was not seen in an ung + control. A model is proposed to account for the selective resistance based on the hypothesis that class 2 de novo and converted suppressor mutations normally result from UV by GC to AT transitions at T=C dimers. The model describes deamination of the cytosine residues in these dimers to become uracil residues. In consequence, monomerization by photoreactivation in cells that can not repair uracils in DNA no longer reverses mutation and GC to AT transitions are established at the sites of uracils.  相似文献   

4.
The modified base, 5-methylcytosine, constitutes approximately 1% of human DNA, but sites containing 5-methylcytosine account for at least 30% of all germline and somatic point mutations. A genetic assay with a sensitivity of 1 in 10(7), based on reversion to neomycin resistance of a mutant pSV2-neo plasmid, was utilized to determine and compare the deamination rates of 5-methylcytosine and cytosine in double-stranded DNA for the first time. The rate constants for spontaneous hydrolytic deamination of 5-methylcytosine and cytosine in double-stranded DNA at 37 degrees C were 5.8 x 10(-13) s-1 and 2.6 x 10(-13) s-1, respectively. These rates are more than sufficient to explain the observed frequency of mutation at sites containing 5-methylcytosine and emphasize the importance of hydrolytic deamination as a major source of human mutations.  相似文献   

5.
Summary The induction of mutations by ultraviolet light and delayed photoreversal in bacteria defective for SOS mutagenesis is discussed in terms of two models: the two-step misincorporation and bypass model, and the model involving simple deamination of cytosine-containing dimers. In phage S13 the latter appears to be the predominant mechanism. In Escherichia coli there is little evidence that the simple deamination mechanism is of any significance except in ung strains lacking uracil glycosylase where uracils left after photoreversal are not removed. Deamination might, however, occur during the operation of translesion synthesis via the two-step model and if it did, subsequent photoreversal would lead to the mutation being extended from one to both strands by uracil glycosylase repair rather than being removed.  相似文献   

6.
Previously it has not been possible to determine the rate of deamination of cytosine in DNA at 37 degrees C because this reaction occurs so slowly. We describe here a sensitive genetic assay to measure the rate of cytosine deamination in DNA at a single cytosine residue. The assay is based on reversion of a mutant in the lacZ alpha gene coding sequence of bacteriophage M13mp2 and employs ung- bacterial strains lacking the enzyme uracil glycosylase. The assay is sufficiently sensitive to allow us to detect, at a given site, a single deamination event occurring with a background frequency as low as 1 in 200,000. With this assay, we determined cytosine deamination rate constants in single-stranded DNA at temperatures ranging from 30 to 90 degrees C and then calculated that the activation energy for cytosine deamination in single-stranded DNA is 28 +/- 1 kcal/mol. At 80 degrees C, deamination rate constants at six sites varied by less than a factor of 3. At 37 degrees C, the cytosine deamination rate constants for single- and double-stranded DNA at pH 7.4 are 1 x 10(-10) and about 7 x 10(-13) per second, respectively. (In other words, the measured half-life for cytosine in single-stranded DNA at 37 degrees C is ca. 200 years, while in double-stranded DNA it is on the order of 30,000 years.) Thus, cytosine is deaminated approximately 140-fold more slowly when present in the double helix. These and other data indicate that the rate of deamination is strongly dependent upon DNA structure and the degree of protonation of the cytosine. The data suggest that agents which perturb DNA structure or facilitate direct protonation of cytosine may induce deamination at biologically significant rates. The assay provides a means to directly test the hypothesis.  相似文献   

7.
5-Methylcytosine residues in DNA underwent deamination at high temperatures. Furthemore, their rate of deamination at neutral or alkaline pH was greater than that of cytosine residues in DNA. As sources of [14C]5-methylcytosine-containing DNA, we used bacteriophage XP-12 DNA, in which 5-methylcytosine residues completely replace C residues, and calf thymus DNA experimentally substituted with [14C]5-methylcytosine residues. Upon incubation at 95°C in a physiological buffer or at 60°C in 1 M NaOH, the respective rates of deamination of 5-methylcytosine residues were about 3- and 1.5-times those of cytosine residues. Under the same conditions, the free 5-methyldeoxycytidine was converted to thymidine more rapidly than deoxycytidine was converted to deoxyuridine. The reactions at physiological pH and elevated temperature suggest that deamination of 5-methylcytosine residues may yield a significant portion of spontaneous mutations in vivo, especially in view of the lack of thymine-specific mismatch repair systems with specificity and efficiency comparable to that of uracil excision repair systems.  相似文献   

8.
Mutants of bacteriophage T4 which exhibit increased sensitivity to ultraviolet radiation specifically at high temperature were isolated after mutagenesis with hydroxylamine. At 42 °C the mutants are twice as sensitive to ultraviolet light as T4D, whereas at 30 °C they exhibit survival curves almost identical to that of the wild-type strain. Complementation tests revealed that the mutants possess temperature-sensitive mutations in the v gene.Evidence is presented to show that T4 endonuclease V produced by the mutants is more thermolabile than the enzyme of the wild-type. (1) Extracts of cells infected with the mutants were capable of excising pyrimidine dimers from ultraviolet irradiated T4 DNA at 30 °C, but no selective release of dimers was induced at 42 °C. (2) Endonuclease V produced by the mutant was inactivated more rapidly than was the enzyme from T4D-infected cells when the purified enzymes were incubated in a buffer at 42 °C. From these results it is evident that the v gene is the structural gene for T4 endonuclease V, which plays an essential role in the excision-repair of ultraviolet light-damaged DNA.The time of action of the repair endonuclease was determined by using the mutant. Survival of a temperature-sensitive v mutant, exposed to ultraviolet light, increased when infected cells were incubated at 30 °C for at least ten minutes and then transferred to 42 °C. It appears that repair of DNA proceeds during an early stage of phage development.  相似文献   

9.
There is disagreement in the literature as to whether the major mutagenic photoproduct induced in DNA by ultraviolet light is the cyclobutane dipyrimidine dimer, the most common product, or the [6-4] photoproduct, the next most frequent. In the experiments reported here, cyclobutane dimers were removed from irradiated lambda phage DNA by enzymatic photoreactivation, a process thought to affect no other photoproduct. Photoreactivation of lambda phage in host cells and of lambda DNA in solution reduced clear plaque mutants per plaque-forming unit by two-thirds, in host cells with a constant and near-maximal expression of the SOS functions required for mutagenesis. This result is interpreted to mean that removal of cyclobutane dimers in or near the mutated gene reduces mutation induced by ultraviolet light by two-thirds; therefore, cyclobutane dimers in the phage DNA are responsible for most observed mutations. DNA sequences of mutations in photoreactivated phage showed a smaller fraction of G.C to A.T transitions and a larger fraction of A.T to G.C transitions, compared to phage that were not photoreactivated. This suggests that cyclobutane dimers at TC and CC sites are particularly mutagenic.  相似文献   

10.
11.
Sunlight-induced C→T mutation hotspots occur most frequently at methylated CpG sites in tumor suppressor genes and are thought to arise from translesion synthesis past deaminated cyclobutane pyrimidine dimers (CPDs). While it is known that methylation enhances CPD formation in sunlight, little is known about the effect of methylation and sequence context on the deamination of 5-methylcytosine (mC) and its contribution to mutagenesis at these hotspots. Using an enzymatic method, we have determined the yields and deamination rates of C and mC in CPDs and find that the frequency of UVB-induced CPDs correlates with the oxidation potential of the flanking bases. We also found that the deamination of TmC and mCT CPDs is about 25-fold faster when flanked by G's than by A's, C's or T's in duplex DNA and appears to involve catalysis by the O6 group of guanine. In contrast, the first deamination of either C or mC in ACmCG with a flanking G was much slower (t1/2 > 250 h) and rate limiting, while the second deamination was much faster. The observation that CmCG dimers deaminate very slowly but at the same time correlate with C→T mutation hotspots suggests that their repair must be slow enough to allow sufficient time for deamination. There are, however, a greater number of single C→T mutations than CC→TT mutations at CmCG sites even though the second deamination is very fast, which could reflect faster repair of doubly deaminated dimers.  相似文献   

12.
The single-stranded character of cytosine bases in three cruciform structures has been assessed by an examination of reactivity towards sodium bisulphite. Unpaired cytosine residues undergo deamination at C4 to give deoxyuracil, and propagation in an ung Escherichia coli host results in C-G----T-A transition mutations, detectable by restriction cleavage or sequence analysis. Very high frequencies of such mutations have been found at cruciform loops, confirming their unpaired character, with almost zero background mutation frequencies elsewhere. A low level of modification was observed at the four-way junction of a cruciform. The results indicate that the optimal cruciform loop size is four bases, with loose 'breathing' at the first base pair at the top of the cruciform stem at 37 degrees C, and little or no opening of base pairs at the four-way junction.  相似文献   

13.
14.
The role of DNA polymerase eta in UV mutational spectra   总被引:4,自引:0,他引:4  
Choi JH  Pfeifer GP 《DNA Repair》2005,4(2):211-220
UV irradiation generates predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is encoded by the POLH (XPV) gene in humans. In order to clarify the specific role of Pol eta in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells. This strategy provides an advantage over studying mutagenesis in cell lines derived from normal individuals and XP-V patients, since the genetic background of the cells is identical. Synthetic RNA duplexes were used to inhibit Pol eta expression in 293T cells. The reduction of Pol eta mRNA and protein was greater than 90%. The supF shuttle vector was irradiated with UVC and replicated in 293T cells in presence of anti-Pol eta siRNA. The supF mutant frequency was increased by up to 3.6-fold in the siRNA knockdown cells relative to control cells confirming that Pol eta plays an important role in mutation avoidance and that the pol eta knockdown was efficient. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Surprisingly, neither the type of mutations nor their distribution along the supF gene were substantially different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. The data are compatible with two models. (i) Incorrect replication of cytosine-containing photoproducts by a polymerase other than Pol eta produces similar mutations as when Pol eta is present but at a higher frequency. (ii) Due to lack of Pol eta or low levels of remaining Pol eta, lesion replication is delayed allowing more time for cytosine deamination within CPDs to occur. We provide proof of principle that siRNA technology can be used to dissect the in vivo roles of lesion bypass DNA polymerases in DNA damage-induced mutagenesis.  相似文献   

15.
Mutations induced by ultraviolet light   总被引:12,自引:0,他引:12  
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.  相似文献   

16.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

17.
High frequency mutagenesis by a DNA methyltransferase.   总被引:26,自引:0,他引:26  
J C Shen  W M Rideout  P A Jones 《Cell》1992,71(7):1073-1080
HpaII methylase (M. HpaII), an example of a DNA (cytosine-5)-methyltransferase, was found to induce directly a high frequency of C-->U transition mutations in double-stranded DNA. A mutant pSV2-neo plasmid, constructed with an inactivating T-->C transition mutation creating a CCGG site, was incubated with M. HpaII in the absence of S-adenosylmethionine (SAM). This caused an approximately 10(4)-fold increase in the rate of reversion when the mutant neo plasmid was transformed into bacteria lacking uracil-DNA glycosylase. The mutation frequency was very sensitive to SAM concentration and was reduced to background when the concentration of the methyl donor exceeded 300 nM. The data support current models for the formation of a covalent complex between the methyltransferase and cytosine. They also suggest that the occurrence of mutational hot spots at CpG sites may not always be due to spontaneous deamination of 5-methylcytosine, but might also be initiated by enzymatic deamination of cytosine and proceed through a C-->U-->T pathway.  相似文献   

18.
L V Konevega  V L Kalinin 《Genetika》1985,21(7):1105-1110
Survival of phage lambda cI857 inactivated by bisulfite (pH 5.6, 37 degrees C) is higher (the dose modification factor approx. 1.2) and frequency of bisulfite-induced c-mutations 2-4-fold lower on the lawn of the wild-type strain ung+, as compared to ung-1 mutant deficient in uracil-DNA glycosylase. Irradiation of host cells by a moderate UV dose inducing SOS repair system enhances the frequency of bisulfite-induced c-mutations 2-3-fold in the wild-type (ung+) host, but not in the ung-1 mutant. It is suggested that W-mutagenesis in bisulfite-treated lambda phage in the ung+ cells is due to SOS repair of apyrimidinic sites which are produced during excision of uracil residues, the products of cytosine deamination.  相似文献   

19.
Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G→T:A or G:C→A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination.  相似文献   

20.
Burger A  Fix D  Liu H  Hays J  Bockrath R 《Mutation research》2003,522(1-2):145-156
We have estimated in vivo deamination rates for cytosines in cyclobutane pyrimidine dimers (CPD or PyPy) in UV-irradiated E. coli deficient in uracil DNA glycosylase. The protocol consisted of UV-irradiation, holding in buffer to allow for deamination of cytosines in CPDs and photoreversal (PR) to establish uracils where cytosines in CPD deaminated. The deamination rate at TC photoproducts targeting glutamine tRNA suppressor mutations was estimated from the increase in the mutation frequency after PR (MF(PR)) that developed as UV-irradiated cells were held before PR. Evidence suggested that an earlier study with this protocol under-estimated the deamination rate at sites producing the same mutations in an E. coli B/r strain. With a K12 strain, where the targeting apparently is principally by CPD and not (6-4) photoproducts, a larger rate of k = 0.0091 min(-1) at 42 degrees C resulted. The dark assay for MF also increased significantly with time for deamination consistent with a model for efficient mutation by translesion synthesis at uracil-containing CPD. In addition, we used a strain constructed by Cupples and Miller in which beta-galactosidase was inactive because -GGG- was at codon 461 and would revert to Lac(+) only when replaced by -GAG- or -GAA- for glutamate. CC photoproducts at this target site in the opposite DNA strand could reveal effects of first and second deaminations in the same CPD. MF(PR) for Lac(+) mutations increased and then decreased as a function of deamination time (at six temperatures 36-48 degrees C). Fitting an approximate model equation that distinguished two different deamination rates to these data suggested a first deamination producing Lac(+) at a rate about eight-fold less than a second deamination restoring the Lac(-) phenotype. We conclude that deamination, changing a cytosine-containing CPD to a uracil-containing CPD, could be an integral part of UV-induced C-to-T mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号