首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct immunofluorescence assay (DFA) (Merifluor; Meridian Diagnostics, Inc., Cincinnati, Ohio) was compared to an immunomagnetic separation (IMS) assay (Dynabeads; Dynal, Inc., Lake Success, N.Y.) coupled with immunofluorescent microscopy (Waterborne, Inc., New Orleans, La.) for their ability to detect low concentrations of Cryptosporidium parvum oocysts in adult bovine fecal material. IMS-DFA resulted in a 2-log-unit increase in sensitivity (10 oocysts/g) compared to DFA alone (1,000 oocysts/g). The higher sensitivity obtained with IMS-DFA resulted from testing 2 g of fecal material instead of the 13 to 19 mg of fecal material tested in the DFA; the increased sensitivity was not attributable to a higher percent recovery.  相似文献   

2.
This study evaluated clams as bioindicators of fecal protozoan contamination using three approaches: (i) clam tissue spiking experiments to compare several detection techniques; (ii) clam tank exposure experiments to evaluate clams that had filtered Cryptosporidium oocysts from inoculated water under a range of simulated environmental conditions; (iii) sentinel clam outplanting to assess the distribution and magnitude of fecal contamination in three riverine systems in California. Our spiking and tank experiments showed that direct fluorescent antibody (DFA), immunomagnetic separation (IMS) in combination with DFA, and PCR techniques could be used to detect Cryptosporidium in clam tissues. The most analytically sensitive technique was IMS concentration with DFA detection of oocysts in clam digestive gland tissues, which detected 10 oocysts spiked into a clam digestive gland 83% of the time. In the tank experiment, oocyst dose and clam collection time were significant predictors for detecting Cryptosporidium parvum oocysts in clams. In the wild clam study, Cryptosporidium and Giardia were detected in clams from all three study regions by IMS-DFA analysis of clam digestive glands, with significant variation by sampling year and season. The presence of C. parvum DNA in clams from riverine ecosystems was confirmed with PCR and DNA sequence analysis.  相似文献   

3.
Cryptosporidium parvum is a protozoan parasite responsible for an increasing number of outbreaks of gastrointestinal illness worldwide. In this report, we describe development of sample preparation protocols for polymerase chain reaction (PCR)-based detection of C. parvum in fecal material and environmental water samples. Two of these methods were found adequate for isolation of Cryptosporidium DNA from filtered water pellet suspensions. The first involved several filtration steps, immunomagnetic separation and freeze-thaw cycles. The second method involved filtration, addition of EnviroAmp lysis reagent, freeze-thaw cycles and precipitation of the DNA with isopropanol. Using nested PCR, we detected 100 oocysts/ml of filtered water pellet suspension, with either of the above sample preparation procedures. Nested PCR increased sensitivity of the assay by two to three orders of magnitude as compared to the primary PCR. The detection limit for seeded fecal samples was 10-fold higher than for filtered environmental water pellet suspension. Nested PCR results showed 62.4 and 91.1% correlation with immunofluorescence assay (IFA) for fecal samples and filtered environmental water pellet suspensions, respectively. This correlation decreased to 47.2% and 44.4%, respectively, when only IFA positive samples were analyzed. However, in fecal samples contaminated with a high number (> 10(5)/g) of C. parvum oocysts, this correlation was 100%.  相似文献   

4.
A computer-assisted laser scanning microscope equipped for confocal laser scanning and color video microscopy was used to examine Cryptosporidium parvum oocysts in two agricultural soils, a barnyard sediment, and calf fecal samples. An agar smear technique was developed for enumerating oocysts in soil and barnyard sediment samples. Enhanced counting efficiency and sensitivity (detection limit, 5.2 x 10(sup2) oocysts(middot)g [dry weight](sup-1)) were achieved by using a semiautomatic counting procedure and confocal laser scanning microscopy to enumerate immunostained oocysts and fragments of oocysts in the barnyard sediment. An agarose-acridine orange mounting procedure was developed for high-resolution confocal optical sectioning of oocysts in soil. Stereo images of serial optical sections revealed the three-dimensional spatial relationships between immunostained oocysts and the acridine orange-stained soil matrix material. In these hydrated, pyrophosphate-dispersed soil preparations, oocysts were not found to be attached to soil particles. A fluorogenic dye permeability assay for oocyst viability (A. T. Campbell, L. J. Robertson, and H. V. Smith, Appl. Environ. Microbiol. 58:3488-3493, 1992) was modified by adding an immunostaining step after application of the fluorogenic dyes propidium iodide and 4(prm1),6-diamidino-2-phenylindole. Comparison of conventional color epifluorescence and differential interference contrast images on one video monitor with comparable black-and-white laser-scanned confocal images on a second monitor allowed for efficient location and interpretation of fluorescently stained oocysts in the soil matrix. This multi-imaging procedure facilitated the interpretation of the viability assay results by overcoming the uncertainties caused by matrix interference and background fluorescence.  相似文献   

5.
Hoar  B. R.  Atwill  E. R.  Farver  T. B.  Jones  T. 《Quantitative Microbiology》2000,2(1):21-36
Populations of beef cattle represent a potential non-point source of environmental contamination for Cryptosporidium parvum if on-farm management practices fail to minimize transport from bovine manure to adjacent water sources. Characterizing this risk of contamination requires several parameters to be estimated, the most important being a valid and precise estimate of the oocyst loading rate per animal unit. The oocyst loading rate is defined in this study as the total number of oocysts excreted by a cohort of adult beef cows during a 24[emsp4 ]h period. We propose a methodology for estimating this parameter for low prevalent populations whereby the majority of individuals are test negative. Under specific degrees of confidence and at the population scale, this methodology generates estimates for maximal oocyst loading based on the sensitivity of the diagnostic test and the point prevalence and intensity of fecal shedding from a cross-sectional survey of the target population.Our cross-sectional survey on California beef cows generated a prevalence of infection of 1.1 % (6/557) and an intensity of oocyst shedding ranging from 219 to 5,491 oocysts/g, with a geometric mean of 835 oocysts/g from six positive cows. Negative binomial estimate of the percent recovery of the diagnostic assay was 0.235. Based on this percent recovery and using approximately 19.4[emsp4 ]mg of feces per assay, the DT90 of our assay, defined as the concentration of oocysts at which our diagnostic assay had a 90 % probability of detecting one or more oocysts in a sample, was 755 oocyst/g feces. At a 95 % confidence level, the estimated maximum number of oocysts being excreted in the feces of California beef cows ranged from 4.8 to 14.4 oocysts/g feces/cow, or 7.7×104 to 2.3×105 oocysts/beef cow/day.  相似文献   

6.
Bivalve molluscs concentrate Cryptosporidium oocysts from fecal-contaminated aquatic environments and are therefore useful in monitoring water quality. A real-time TaqMan polymerase chain reaction (PCR) system was developed to allow for large scale quantitative detection of Cryptosporidium spp. in mussels (Mytilus californianus). The TaqMan sensitivity and specificity were compared to conventional PCR and direct immunofluorescent antibody (DFA) assays, with and without immunomagnetic separation (IMS), to identify the best method for parasite detection in mussel hemolymph, gill washings and digestive glands. TaqMan PCR and two conventional PCR systems all detected 1 or more oocysts spiked into 1 ml hemolymph samples. The minimum oocyst detection limit in spiked 5 ml gill wash and 1 g digestive gland samples tested by TaqMan PCR and DFA was 100 oocysts, with a 1 log(10) improvement when samples were first processed by IMS. For tank exposed mussels, TaqMan and conventional PCR methods detected C. parvum in <5% of hemolymph samples. No gill washings from these same mussels tested positive by TaqMan PCR or DFA analysis even with IMS concentration. All methods detected the highest prevalence of C. parvum-positive samples in digestive gland tissues of exposed mussels. In conclusion, the most sensitive method for the detection of C. parvum in oocyst-exposed mussels was IMS concentration with DFA detection: 80% of individual and 100% of pooled digestive gland samples tested positive. TaqMan PCR was comparable to conventional PCR for detection of C. parvum oocysts in mussels and additionally allowed for automated testing, high throughput, and semi-quantitative results.  相似文献   

7.
Our primary goal was to generate an accurate estimate of the daily environmental loading rate of Cryptosporidium parvum oocysts for adult beef cattle, using immunomagnetic separation coupled with direct immunofluorescence microscopy for a highly sensitive diagnostic assay. An additional goal was to measure the prevalence and intensity of fecal shedding of C. parvum oocysts in pre- and postparturient cows as an indicator of their potential to infect young calves. This diagnostic method could detect with a > or = 90% probability oocyst concentrations as low as 3.2 oocysts g of feces(-1), with a 54% probability of detecting just one oocyst g of feces(-1). Using this diagnostic method, the overall apparent prevalence of adult beef cattle testing positive for C. parvum was 7.1% (17 of 240), with 8.3 and 5.8% of cattle shedding oocysts during the pre- and postcalving periods, respectively. The mean intensity of oocyst shedding for test-positive cattle was 3.38 oocysts g of feces(-1). The estimated environmental loading rate of C. parvum ranged from 3,900 to 9,200 oocysts cow(-1) day(-1), which is substantially less than a previous estimate of 1.7 x 10(5) oocysts cow(-1) day(-1) (range of 7.7 x 10(4) to 2.3 x 10(5) oocysts cow(-1) day(-1)) (B. Hoar, E. R. Atwill, and T. B. Farver, Quant. Microbiol. 2:21-36, 2000). Use of this highly sensitive assay functioned to detect a greater proportion of low-intensity shedders in our population of cattle, which reduced the estimated mean intensity of shedding and thereby reduced the associated environmental loading rate compared to those of previous studies.  相似文献   

8.
Species of Cryptosporidium and Giardia can infect humans and wildlife and have the potential to be transmitted between these 2 groups; yet, very little is known about these protozoans in marine wildlife. Feces of river otters (Lontra canadensis), a common marine wildlife species in the Puget Sound Georgia Basin, were examined for species of Cryptosporidium and Giardia to determine their role in the epidemiology of these pathogens. Using ZnSO4 flotation and immunomagnetic separation, followed by direct immunofluorescent antibody detection (IMS/DFA), we identified Cryptosporidium sp. oocysts in 9 fecal samples from 6 locations and Giardia sp. cysts in 11 fecal samples from 7 locations. The putative risk factors of proximate human population and degree of anthropogenic shoreline modification were not associated with the detection of Cryptosporidium or Giardia spp. in river otter feces. Amplification of DNA from the IMS/DFA slide scrapings was successful for 1 sample containing > 500 Cryptosporidium sp. oocysts. Sequences from the Cryptosporidium 18S rRNA and the COWP loci were most similar to the ferret Cryptosporidium sp. genotype. River otters could serve as reservoirs for Cryptosporidium and Giardia species in marine ecosystems. More work is needed to better understand the zoonotic potential of the genotypes they carry as well as their implications for river otter health.  相似文献   

9.
Orally supplemented lactoferrin derived from bovine milk is purported to have beneficial effects on gut health of animals. Bovine lactoferrin (0, 60, or 120 mg/d) was fed to ileal cannulated, adult dogs in a replicated 3 x 3 Latin square design with 14 d periods. Control dogs tended (p = 0.06) to have higher fecal DM concentrations compared with dogs supplemented with 120 mg/d lactoferrin (34.5 vs. 32.9%). Fecal scores ranged from 3.0 - 3.3, suggesting that feces of all dogs was near the desired consistency, with dogs supplemented with 120 mg/d lactoferrin tending (p = 0.08) to have higher fecal scores. Ileal azoreductase activity tended (p < 0.10) to be higher in dogs supplemented with 60 or 120 mg/d lactoferrin (609 vs. 592 nmol/h per g ileal DM, respectively) as compared with unsupplemented dogs (272 nmol/h per g ileal DM). The following bacterial groups were measured: bifidobacteria, Campylobacter spp., Clostridium spp., eubacteria, Escherichia coli, Lactobacillus spp., Staphylococcus spp., and Streptococcus spp. Fecal streptococci concentrations were lower (p < 0.05) for dogs receiving 60 mg/d lactoferrin (8.60 log10 cfu/g fecal DM) as compared with unsupplemented dogs (9.19 log10 cfu/g fecal DM) or dogs receiving 120mg lactoferrin/d (9.43 log10 cfu/g fecal DM). Dogs supplemented with 120mg/d lactoferrin tended (p = 0.08) to have higher fecal indole concentrations as compared to unsupplemented dogs (1.80 vs. 1.46 micromol/g fecal DM). Because most bacterial groups measured were unaffected, it appears that lactoferrin did not exhibit prebiotic activity, and based on the data collected, lactoferrin also did not appear to have major effects on indices of health in the dog.  相似文献   

10.
To date, large-scale production of Cryptosporidium parvum oocysts has only been achieved by amplification in neonatal calves and sheep. Many laboratories currently depend on supplies from external sources and store oocysts for prolonged periods which results in progressive loss of viability. Six to 8-week-old interferon gamma receptor knockout (IFN gamma R-KO) mice on a C57BL/6 background were inoculated by gavage (2000 oocysts/animal). Fecal pellets were collected daily from 7 days post-infection (p.i.) up to 2 weeks p.i. Intestinal oocyst yield was assessed at days 11, 12 and 14 p.i. by homogenization of intestinal tissues. Ether extraction and one or more NaCl flotations were used to purify oocysts. Total recoveries averaged 2.6 x 10(6) oocysts/mouse from fecal material and 3.8 x 10(7) oocysts/mouse from intestinal tissues. Overall, 2.3 x 10(9) purified oocysts were obtained from 60 mice. Recovered oocysts were capable of sporulation and were shown to be infectious both in vitro and in vivo. Oocyst amplification was achieved in only 11-14 days with minimal expense. The simplicity of this method presents a practical alternative for the routine passage, maintenance and storage of C. parvum in biomedical laboratories.  相似文献   

11.
The ability to determine inactivation rates of Cryptosporidium parvum oocysts in environmental samples is critical for assessing the public health hazard of this gastrointestinal parasite in watersheds. We compared a dye permeability assay, which tests the differential uptake of the fluorochromes 4'-6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) by the oocysts (A. T. Campbell, L. J. Robertson, and H. V. Smith, Appl. Environ. Microbiol. 58:3488-3493, 1992), with an in vitro excystation assay, which tests their ability to excyst and, thus, their metabolic potential and potential for infectivity (J.B. Rose, H. Darbin, and C.P. Gerba, Water Sci. Technol. 20:271-276, 1988). Formaldehyde-fixed (killed) oocysts and untreated oocysts were permeabilized with sodium hypochlorite and subjected to both assays. The results of the dye permeability assays were the same, while the excystation assay showed that no excystation occurred in formaldehyde-fixed oocysts. This confirmed that oocyst wall permeability, rather than metabolic activity potential, was the basis of the dye permeability viability assessment. A previously developed protocol (L. J. Anguish and W. C. Ghiorse, Appl. Environ. Microbiol. 63:724-733, 1997) for determining viability of oocysts in soil and sediment was used to examine further the use of oocyst permeability status as an indicator of oocyst viability in fecal material stored at 4 degrees C and in water at various temperatures. Most of the oocysts in fresh calf feces were found to be impermeable to the fluorochromes. They were also capable of excystation, as indicated by the in vitro excystation assay, and were infective, as indicated by a standard mouse infectivity assay. The dye permeability assay further showed that an increase in the intermediate population of oocysts permeable to DAPI but not to PI occurred over time. There was also a steady population of oocysts permeable to both dyes. Further experiments with purified oocysts suspended in distilled water showed that the shift in oocyst populations from impermeable to partially permeable to fully permeable was accelerated at temperatures above 4 degrees C. This sequence of oocyst permeability changes was taken as an indicator of the oocyst inactivation pathway. Using the dye permeability results, inactivation rates of oocysts in two fecal pools stored in the dark at 4 degrees C for 410 and 259 days were estimated to be 0.0040 and 0.0056 oocyst day-1, respectively. The excystation assay gave similar inactivation rates of 0.0046 and 0.0079 oocyst day-1. These results demonstrate the utility of the dye permeability assay as an indicator of potential viability and infectivity of oocysts, especially when combined with improved microscopic methods for detection of oocysts in soil, turbid water, and sediments.  相似文献   

12.
Accurate quantification of Cryptosporidium parvum oocysts in animal fecal deposits on land is an essential starting point for estimating watershed C. parvum loads. Due to the general poor performance and variable recovery efficiency of existing enumeration methods, protocols were devised based on initial dispersion of oocysts from feces by vortexing in 2 mM tetrasodium pyrophosphate, followed by immunomagnetic separation. The protocols were validated by using an internal control seed preparation to determine the levels of oocyst recovery for a range of fecal types. The levels of recovery of 102 oocysts from cattle feces (0.5 g of processed feces) ranged from 31 to 46%, and the levels of recovery from sheep feces (0.25 g of processed feces) ranged from 21% to 35%. The within-sample coefficients of variation for the percentages of recovery from five replicates ranged from 10 to 50%. The ranges for levels of recovery of oocysts from cattle, kangaroo, pig, and sheep feces (juveniles and adults) collected in a subsequent watershed animal fecal survey were far wider than the ranges predicted by the validation data. Based on the use of an internal control added to each fecal sample, the levels of recovery ranged from 0 to 83% for cattle, from 4 to 62% for sheep, from 1 to 42% for pigs, and from 40 to 73% for kangaroos. Given the variation in the levels of recovery of oocysts from different fecal matrices, it is recommended that an internal control be added to at least one replicate of every fecal sample analyzed to determine the percentage of recovery. Depending on the animal type and based on the lowest approximate percentages of recovery, between 10 and 100 oocysts g of feces−1 must be present to be detected.  相似文献   

13.
Fecal samples were collected for 14–26 months from three male and six female Pallas' cats (Otocolobus manul) to examine gonadal steroidogenic activity in response to changes in photoperiod and treatment with exogenous gonadotropins. Females exhibited a seasonal anestrus from May–December, excreting consistently low concentrations of fecal estrogens (overall mean, 50.2±8.5 ng/g). During the breeding season (January–April), baseline fecal estrogen concentrations were higher, averaging 128.4±18.9 ng/g, with peak concentrations ranging from 455.8–909.6 ng/g. Interpeak intervals in estrogen excretion ranged between 7 and 21 days, with an average estrous cycle length of 14.3±1.7 days. Two females became pregnant after natural mating, with overall luteal progestogen concentrations averaging ~40 μg/g throughout gestation. Fecal estrogens increased in mid‐gestation, peaking just before birth. Induction of follicular development with eCG (100–300 IU, i.m.) resulted in an increase in fecal estrogens (peak range, 263.1–1198.1 ng/g), followed by a postovulatory increase in fecal progestogens (overall mean, 41.1±11.9 μg/g) after hCG (75–150 IU, i.m.). Despite apparently normal ovarian responses, none of the females conceived after artificial insemination (AI). The gonadotropin‐induced nonpregnant luteal phase lasted 49.8±5.3 days (range, 30–60 days), whereas gestation lasted ~70 days. In the male Pallas' cat, fecal androgens were elevated from November–April (overall mean, 352.3±30.3 ng/g) compared with nadir concentrations during the rest of the year (82.1±3.3 ng/g). Entrainment of seasonality to photoperiod was demonstrated by stimulation of gonadal steroidogenic activity in cats exposed to increasing artificial light during natural (nonbreeding season) and artificially induced short‐day photoperiods. In summary, reproduction in Pallas' cats is highly seasonal and photoperiod‐dependent. Females exhibit elevated baseline and peak fecal estrogen concentrations for 3–4 months during late winter/early spring. Testicular steroidogenic activity precedes the rise in female estrogen excretion by about 2 months, presumably to ensure maximal sperm production during the breeding season. Zoo Biol 21:347–364, 2002. Published 2002 Wiley‐Liss, Inc.  相似文献   

14.
Twelve percent of 853 California ground squirrels (Spermophilus beecheyi) from six different geographic locations in Kern County, Calif., were found to be shedding on average 44,482 oocysts g of feces(-1). The mean annual environmental loading rate of Cryptosporidium oocysts was 57,882 oocysts squirrel(-1) day(-1), with seasonal patterns of fecal shedding ranging from <10,000 oocysts squirrel(-1) day(-1) in fall, winter, and spring to levels of 2 x 10(5) oocysts squirrel(-1) day(-1) in summer. Juveniles were about twice as likely as adult squirrels to be infected and shed higher concentrations of oocysts than adults did, with particularly high levels of infection and shedding being found among juvenile male squirrels. Based on DNA sequencing of a portion of the 18S small-subunit rRNA gene, there existed three genotypes of Cryptosporidium species in these populations of squirrels (Sbey03a, Sbey03b, and Sbey03c; accession numbers AY462231 to AY462233, respectively). These unique DNA sequences were most closely related (96 to 97% homology) to porcine C. parvum (AF115377) and C. wrairi (AF115378). Inoculating BALB/c neonatal mice with up to 10,000 Sbey03b or Sbey03c fresh oocysts from different infected hosts did not produce detectable levels of infection, suggesting that this common genotype shed by California ground squirrels is not infectious for mice and may constitute a new species of Cryptosporidium.  相似文献   

15.
Pneumocystis jirovecii is a common cause of life-threatening pneumonia among immunocompromised patients. Using 400 fresh bronchoalveolar lavage samples, we compared prospectively routine direct immunofluorescence assay (DFA) and a real-time PCR assay, performed on a LightCycler system, for the detection of P. jirovecii. Among the 66 PCR positive samples, 31 were positive by DFA. No patient was found as having the pattern "PCR--ve/DFA+ve". The semi-quantification of the P. jirovecii DNA was represented by the cycle threshold (Ct). Using DFA as the gold standard, the sensitivity of the PCR was 100% for Ct>/=28 and the specificity was 100% for Ct<22. Between these two points, the results could be discrepant. The patients of the "22/=28" group, and presented less frequently with HIV-infection and elevated lactate dehydrogenase (LDH) assay than in the "Ct<22" group. A negative PCR allowed us to exclude the P. jirovecii pneumonia. The real-time PCR assay seems to be an accurate diagnosis method and could replace the DFA. The semi-quantitative results should be helpful to distinguish colonized, subclinically infected and P. jirovecii pneumonia patients.  相似文献   

16.
Accurate quantification of Cryptosporidium parvum oocysts in animal fecal deposits on land is an essential starting point for estimating watershed C. parvum loads. Due to the general poor performance and variable recovery efficiency of existing enumeration methods, protocols were devised based on initial dispersion of oocysts from feces by vortexing in 2 mM tetrasodium pyrophosphate, followed by immunomagnetic separation. The protocols were validated by using an internal control seed preparation to determine the levels of oocyst recovery for a range of fecal types. The levels of recovery of 10(2) oocysts from cattle feces (0.5 g of processed feces) ranged from 31 to 46%, and the levels of recovery from sheep feces (0.25 g of processed feces) ranged from 21% to 35%. The within-sample coefficients of variation for the percentages of recovery from five replicates ranged from 10 to 50%. The ranges for levels of recovery of oocysts from cattle, kangaroo, pig, and sheep feces (juveniles and adults) collected in a subsequent watershed animal fecal survey were far wider than the ranges predicted by the validation data. Based on the use of an internal control added to each fecal sample, the levels of recovery ranged from 0 to 83% for cattle, from 4 to 62% for sheep, from 1 to 42% for pigs, and from 40 to 73% for kangaroos. Given the variation in the levels of recovery of oocysts from different fecal matrices, it is recommended that an internal control be added to at least one replicate of every fecal sample analyzed to determine the percentage of recovery. Depending on the animal type and based on the lowest approximate percentages of recovery, between 10 and 100 oocysts g of feces(-1) must be present to be detected.  相似文献   

17.
18.
This study was undertaken to investigate the cryopreservation of Cryptosporidium parvum oocysts. Oocysts purified from mouse feces were suspended in distilled water, 10% glycerin, and 2.5% potassium dichromate. They were stored at -20 C and -80 C for 2, 7, and 30 days, respectively. In addition to the purified oocysts, the feces of C. parvum-infected mice were preserved under the same conditions described above. Purified and fecal oocysts were thawed at 4 C, and their viability was assessed by a nucleic acid stain, excystation test, tissue culture infectivity test, and infectivity to immunosuppressed adult mice. Oocysts purified from fecal material prior to cryopreservation lost most of their viability and all of their infectivity for tissue culture and mice. However, when oocysts were cryopreserved in feces, between 11.7 and 34.0% were judged to be viable and retained their infectivity for mice when stored at -20 C (but not -80 C) for 2, 7, and 30 days. Clearly, fecal material provides a cryoprotective environment for C. parvum oocysts stored at -20 C for at least 30 days.  相似文献   

19.
Understanding the behavior of Cryptosporidium oocysts in the environment is critical to developing improved watershed management practices for protection of the public from waterborne cryptosporidiosis. Analytical methods of improved specificity and sensitivity are essential to this task. We developed a nested PCR-restriction fragment length polymorphism assay that allows detection of a single oocyst in environmental samples and differentiates the human pathogen Cryptosporidium parvum from other Cryptosporidium species. We tested our method on surface water and animal fecal samples from the Wachusett Reservoir watershed in central Massachusetts. We also directly compared results from our method with those from the immunofluorescence microscopy assay recommended in the Information Collection Rule. Our results suggest that immunofluorescence microscopy may not be a reliable indicator of public health risk for waterborne cryptosporidiosis. Molecular and environmental data identify both wildlife and dairy farms as sources of oocysts in the watershed, implicate times of cold water temperatures as high-risk periods for oocyst contamination of surface waters, and suggest that not all oocysts in the environment pose a threat to public health.  相似文献   

20.
The occurrence of Cryptosporidium oocysts in feces from a population of wild eastern grey kangaroos inhabiting a protected watershed in Sydney, Australia, was investigated. Over a 2-year period, Cryptosporidium oocysts were detected in 239 of the 3,557 (6.7%) eastern grey kangaroo fecal samples tested by using a combined immunomagnetic separation and flow cytometric technique. The prevalence of Cryptosporidium in this host population was estimated to range from 0.32% to 28.5%, with peaks occurring during the autumn months. Oocyst shedding intensity ranged from below 20 oocysts/g feces to 2.0 x 10(6) oocysts/g feces, and shedding did not appear to be associated with diarrhea. Although morphologically similar to the human-infective Cryptosporidium hominis and the Cryptosporidium parvum "bovine" genotype oocysts, the oocysts isolated from kangaroo feces were identified as the Cryptosporidium "marsupial" genotype I or "marsupial" genotype II. Kangaroos are the predominant large mammal inhabiting Australian watersheds and are potentially a significant source of Cryptosporidium contamination of drinking water reservoirs. However, this host population was predominantly shedding the marsupial-derived genotypes, which to date have been identified only in marsupial host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号