首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix (ECM) proteins synthesized by human placental mesenchymal cells (PMCs) provide structural support for the villus. Aberrant expression of ECM proteins by PMCs has been associated with intrauterine growth restriction (IUGR). To provide insight into the mechanisms of ECM protein regulation in the stroma of the placental villus, in the current study, we examined the interaction of glucocorticoid (GC) and transforming growth factor-beta (TGFbeta) in the modulation of ECM proteins in cultures of PMCs isolated from human term placentas. Initial results obtained by ELISA showed that combined treatment with dexamethasone (DEX) and TGFbeta enhanced oncofetal fibronectin (FFN) protein levels in serum-free culture medium severalfold in a dose-dependent manner. Northern blotting and real-time polymerase chain reaction (PCR) analyses revealed a similar enhancement in levels of FN mRNA in cells treated with TGFbeta and DEX. Real-time PCR results also revealed that DEX and TGFbeta enhanced collagen (Col) I and Col IV expression, but did not affect levels of Col III or laminin, indicative of selective stimulation of ECM proteins. Hypoxic treatment moderately enhanced FFN levels in control cells but not in those treated with DEX and TGFbeta. In contrast with the results obtained with PMCs, we noted that DEX treatment suppressed FFN levels in untreated and TGFbeta-treated cytotrophoblasts, suggesting that GC and TGFbeta modulate FFN expression in placenta in a cell-type-specific manner. We conclude that GC and TGFbeta are key regulators of ECM protein synthesis in PMCs, suggesting a role in modulating placental architecture in uncomplicated pregnancies and those associated with aberrant ECM protein expression.  相似文献   

2.
3.
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.  相似文献   

4.
MicroRNAs (miRNAs) may represent new therapeutic targets for bone and joint diseases. We hypothesized that several cartilage-specific proteins are targeted by a single miRNA and used bioinformatics to identify a miRNA that can modulate extracellular matrix (ECM) homeostasis in cartilage.Bioinformatic analysis of miRNA binding sequences in the 3′-untranslated region (3′-UTR) of target genes was performed to identify a miRNA that could bind to the 3′-UTR of cartilage matrix-related genes. MiRNA expression was studied by quantitative PCR of microdissected growth plate cartilage and binding to the 3′-UTR sequences was analyzed by luciferase interaction studies. Levels of proteins encoded by target genes in cultures of miR-26a mimic- or inhibitor-transfected chondrocytes were determined by FACS or immunoblot analysis.The complementary binding sequence of miR-26a and miR-26b was found in the 3′-UTR of the prehypertrophic/hypertrophic-specific genes Cd200, Col10a1 as well as Col9a1 and Ctgf. Both miRNAs were expressed in cartilage and only miR-26a was downregulated in hypertrophic growth plate cartilage. MiR-26a could interact with the 3′-UTR of Cd200 and Col10a1 in luciferase binding studies, but not with Col9a1 and Ctgf. However, protein expression of target genes and the ECM adaptor genes matrilin-3 and COMP was significantly altered in miR-26a mimic- or inhibitor-transfected chondrocytes, whereas the abundance of the cell surface receptor for insulin was not changed. In conclusion, miR-26a suppresses hypertrophic and ECM adaptor protein production. Dysregulation of miR-26a expression could contribute to ECM changes in cartilage diseases and this miRNA may therefore act as a therapeutic target.  相似文献   

5.
Pancreatic stellate cells (PSCs) are involved in pancreatic inflammation and fibrosis. Recent studies have shown that blocking the renin-angiotensin system (RAS) attenuates pancreatic inflammation and fibrosis. However, there are few data about the direct effects of high glucose on extracellular matrix (ECM) protein synthesis and angiotensin II (Ang II) induction in PSCs. PSCs were isolated from male Sprague-Dawley rats and cultured in medium containing 5.5 mM (LG group) or 27 mM D-glucose (HG group). Levels of Ang II and transforming growth factor-beta (TGF-beta) in culture media were measured and Ang II-positive cells were counted. We used real-time polymerase chain reaction (PCR) to detect Ang II receptor expression and Western blot analysis for the expression of ECM proteins such as connective-tissue growth factor (CTGF) and collagen type IV. Cells were also treated with an Ang II-receptor antagonist (candesartan, 10 microM) or angiotensin-converting enzyme (ACE) inhibitor (ramiprilat, 100 nM). Thymidine uptake by PSCs increased fourfold with high glucose treatment. Ang II levels and the proportion of Ang II-positive PSCs were significantly increased after 6 h under high-glucose conditions. TGF-beta concentrations also increased significantly with high glucose. After 72 h, the expression of CTGF and collagen type IV proteins in high-glucose cultures increased significantly and this increase was effectively attenuated by the candesartan or the ramiprilat. All together, high glucose induced PSCs proliferation and ECM protein synthesis, and these effects were attenuated by an Ang II-receptor antagonist. The data suggest that pancreatic inflammation and fibrosis aggravated by hyperglycemia, and Ang II play an important role in this pathogenesis.  相似文献   

6.
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.  相似文献   

7.
8.
Expansion of the mouse cumulus-oocyte complex (COC) is dependent on oocyte-secreted paracrine factors. Transforming growth factor beta (TGFB) superfamily molecules are prime candidates for the cumulus expansion-enabling factors (CEEFs), and we have recently determined that growth differentiation factor 9 (GDF9) alone is not the CEEF. The aim of this study was to examine oocyte paracrine factors and their signaling pathways that regulate mouse cumulus expansion. Using RT-PCR, oocytes were found to express the two activin subunits, Inhba and Inhbb, and activin A and activin B both enabled FSH-induced cumulus expansion of oocytectomized (OOX) complexes. Follistatin, an activin-binding protein, neutralized activin-induced expansion but had no effect on oocyte-induced expansion. The type I receptors for GDF9 and activin are activin receptor-like kinase 5 (ALK5) and ALK4, respectively, both of which activate the same SMAD 2/3 signaling pathway. We examined the requirement for this signaling system using an ALK 4/5/7 inhibitor, SB-431542. SB-431542 completely ablated FSH-stimulated GDF9-, activin A-, activin B-, and oocyte-induced cumulus expansion. Moreover, SB-431542 also antagonized epidermal growth factor-stimulated, oocyte-induced cumulus expansion. Using real-time RT-PCR, SB-431542 also attenuated GDF9-, activin A-, and oocyte-induced OOX expression of hyaluronan synthase 2, tumor necrosis factor alpha-induced protein 6, prostaglandin synthase 2, and pentraxin 3. This study provides evidence that the CEEF is composed of TGFB superfamily molecules that signal through SMAD 2/3 to enable the initiation of mouse cumulus expansion.  相似文献   

9.
10.
11.
Changes in the temporal and spatial patterns of expression of mRNA encoding uterine extracellular matrix (ECM) proteins were determined during the peri-implantation period. Northern blot hybridization of cDNAs corresponding to laminin (LM) B1, LM B2, entactin, fibronectin, collagen (CL) type IV alpha 1, and CL IV alpha 2 was performed on RNA extracted from either whole mouse uteri or endometrial explants between Day 4, i.e., the day of implantation, and Day 7 of pregnancy, when the decidual response is well established. These analyses revealed a dramatic increase in LM B2, CL IV alpha 1, and CL IV alpha 2 mRNA expression by Day 7 of pregnancy. Relative levels of the mRNA encoding other ECM components, including LM B1, were not altered when compared to changes in the relative level of expression of glyceraldehyde-3-phosphate dehydrogenase mRNA. The differential expression of the B chains of LM appeared to be limited to the stromal cells of the endometrium. In situ hybridization of uterine sections with cRNA probes corresponding to LM B1, LM B2, and CL IV alpha 1 demonstrated that LM B1 was expressed temporally in high amounts in the primary decidual zones (PDZ) and persisted throughout PDZ degeneration. LM B2 mRNA was expressed in both primary and secondary decidual zones and persisted through Day 8 of pregnancy. CL IV alpha 1 mRNA expression mimicked that of LM B2. Oviduct ligation on Day 2 of pregnancy was used to prevent embryo transport to one uterine horn, whereas decidualization and embryo implantation were permitted in the contralateral horn. This experiment demonstrated that the increases in uterine ECM mRNA expression were not due solely to the changing hormonal milieu of the uterus. ECM components, including CL IV, have been shown to bind growth factors such as transforming growth factor-beta (TGF-beta) in an insoluble but biologically active form. The remarkable similarity between the pattern of CL IV and LM B2 expression and previously reported TGF-beta deposition (Tamada et al., Mol Endocrinol 1990; 4:965-972) prompted examination of the effects of this growth factor on blastocyst development in vitro. TGF-beta 1 was tested for its ability to alter embryo outgrowth on LM-coated tissue culture surfaces; however, significant differences in the rate or extent of outgrowth in the presence of TGF-beta were not detected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Metabolism of the extracellular matrix (ECM) is a complex process that becomes disregulated in disease states characterized by chronic inflammation of joints, as is seen in rheumatoid arthritis or fibrosis of the lung. The participation of certain cytokines in this process is generally accepted (transforming growth factor-beta induces fibrosis), while the roles of other cytokines are less clear. Oncostatin M (OSM) is a member of the interleukin-6/leukaemia inhibitory factor (or gp130) cytokine family, and its participation in inflammation and the regulation of ECM metabolism is supported by a number of activities identified in vitro, including regulation of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1. Local overexpression of transforming growth factor-beta has been shown to be fibrogenic in mouse lung, whereas local OSM overexpression via intra-articular administration has been shown to induce a pannus-like inflammatory response in the synovium of mouse knee joints. Here we examine the effects of OSM in the context of those of transforming growth factor-beta using an established adenovirus vector that expresses mOSM (AdmOSM). We administered the virus intra-nasally into Balb/C mice to achieve high expression of OSM in the lung, and examined the effects at various time points. AdmOSM resulted in a vigorous inflammatory response by day 7 which was characterized by an elevation of neutrophil and mononuclear cell numbers and a marked increase in collagen deposition. These data support the use of such systems to study the ECM in vivo, and indicate a potential role for OSM in inflammatory responses that can modulate steady-state ECM deposition in Balb/C mice.  相似文献   

14.
The effect of dexamethasone (DEX) on the expression of fibronectin (FN), proalpha(1)(I) collagen (Col1), integrin alpha(2), alpha(5)and beta(1)subunits mRNAs, were studied by quantitative in situ hybridization (ISH) with radiolabelled probes in relationship with the organization of the extracellular matrix (ECM) of FN in human skin fibroblasts. In particular, two fibroblast strains were analysed, one derived from a control donor, typically organizing a rich ECM of FN, and the other from a patient affected by Ehlers-Danlos syndrome (EDS), which did not assemble the FN-ECM. Treatment of both fibroblast strains with 10(-7) m DEX slightly enhanced the level of FN mRNA (by about 1.5-fold), did not influence the level of alpha(5)subunit mRNA and reduced Col1, alpha(2)and beta(1)integrin subunits mRNAs by 2-3-fold. These results show that, in these cells, DEX coordinately downregulates the expression of Col1 and its specific integrin alpha(2)beta(1). Moreover, DEX regulates in a different manner the alpha(5)and beta(1)subunits forming the main FN receptor (FNR) in skin fibroblasts. Immunofluorescence microscopy evidencing the FN-ECM and integrins containing alpha(5)and beta(1)subunits showed that in control cells DEX induced a slight enhancement of the FN-ECM and of the alpha(5)beta(1)receptors patches. Therefore, in these cells the decrease of beta(1)FN receptor subunit mRNA, as well as the decrease of Col1 and its receptor mRNAs, did not influence the FN-ECM assembly. In EDS fibroblasts, DEX decreased the cytoplasmic accumulation of FN and induced the assembly of a rich FN-ECM through the formation of large FNR integrin patches, codistributing with the FN-ECM. We suggest that in EDS skin fibroblasts DEX corrects the defective FN-ECM favouring the sorting and the organization of FN and its alpha(5)beta(1)integrin receptor.  相似文献   

15.
Cells are subjected to static tension of different magnitudes when cultured on substrates with different stiffnesses. It has long been recognized that mechanical stress is an important modulator of the intervertebral disc degeneration. Here we studied the influence of substrate stiffness on cell morphology, apoptosis and extracellular matrix (ECM) metabolism of the rat annulus fibrosus (AF) cells which are known to be mechanosensitive cells. Polyacrylamide gel substrates with three different stiffnesses were prepared by varying the concentration of acrylamide and bisacrylamide, and the elastic modulus of the different gel substrates were measured with atomic force microscopy (AFM). First-passage rat annular cells were cultured on soft, intermediate, rigid substrates or plastics for 24 or 48 h. The percentages of apoptotic cells were detected by flow cytometry and caspase-3 activity, and morphologic changes were visualized by Hoechst 33258 staining and F-actin staining. In addition, the expression of ECM genes (Col1α1, Col2α1, aggrecan, MMP-3, MMP-13 and ADAMTS-5) were analyzed by RT-PCR. The three different substrates had elastic moduli varying between 1 ± 0.23 kPa (soft, 5% gel with 0.06% bis), 32 ± 2.89 kPa (intermediate, 10% gel with 0.13% bis) and 63 ± 3.45 kPa (rigid, 10% gel with 0.26% bis) with a thickness about 60-70 μm. Most of the rat AF cells appeared small and rounded, and lost most of their stress fibers when cultured on soft substrate. There was a significant increase in the percentage of apoptotic cells in the rat AF cells cultured on soft and intermediate substrates relative to those on plastic surface, with a parallel decrease in the area of cell spreading and nucleus. The AF cells grown on intermediate or rigid substrate had reduced expression of Col1α1, Col2α1 and aggrecan and enhanced expression of MMP-3, MMP-13, and ADAMTS-5 at 24 h or 48 h, respectively, relative to those cultured on plastic surface. Conversely, we observed an up-regulation of Col2α1 and aggrecan and no change in the gene expression of MMP-3, MMP-13, and ADAMTS-5 in AF cells on soft substrates. Rat AF cells are sensitive to substrate stiffness which can regulate the morphology, growth, apoptosis and ECM metabolism of rat AF cells, thus indicating the importance of substrate choice for cell transplantation and regeneration for the treatment of disc degeneration using tissue-engineering technique.  相似文献   

16.
Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.  相似文献   

17.
18.
To determine the ability of radiation to modulate mesangial cell expression of various molecules involved in promoting extracellular matrix (ECM) accumulation [fibronectin, plasminogen activator-inhibitor 1 (Pai1), and tissue inhibitor of metalloproteinase-2 (Timp2)] and degradation (Tgfb, plasminogen activators u-PA or t-PA, matrix metalloproteinases Mmp2 and Mmp9), primary cultures of rat mesangial cells (passage number 6-11) were placed in serum-free medium 24 h prior to irradiation with single doses of 0.5-20 Gy (137)Cs gamma rays. After irradiation, cells were maintained in serum-free medium for a further 48 h. Irradiation of quiescent mesangial cells resulted in significant (P < 0.05) time- and dose-dependent increases in Fn and Pai1 mRNA and/or immunoreactive protein. Despite an increase in Tgfb1 mRNA, there was little evidence for an increase in total Tgfb protein. Indeed, active levels remained unaltered after irradiation. Irradiation led to differential changes in MMP expression; active Mmp2 levels increased, while Mmp9 levels appeared unaltered. In addition, secretion of plasminogen activators into the medium was unchanged after irradiation, while secretion of Timp2 increased. We conclude that irradiating mesangial cells leads to altered production of various molecules involved in accumulation and degradation of extracellular matrix.  相似文献   

19.
Activins betaA and betaB (encoded by Inhba and Inhbb genes, respectively) are related members of the TGF-beta superfamily. Previously, we generated mice with an Inhba knock-in allele (InhbaBK) that directs the expression of activin betaB protein in the spatiotemporal pattern of activin betaA. These mice were small and had shortened life spans, both influenced by the dose of the hypomorphic InhbaBK allele. To understand the mechanism(s) underlying these abnormalities, we now examine growth plates, liver, and kidney and analyze IGF-I, GH, and major urinary proteins. Our studies show that activins modulate the biological effects of IGF-I without substantial effects on GH, and that activin signaling deficiency also has modest effects on hepatic and renal function. To assess the relative influences of activin betaA and activin betaB, we produced mice that express activin betaB from the InhbaBK allele, and not from its endogenous Inhbb locus. InhbaBK/BK, Inhbb-/- mice have failure of eyelid fusion at birth and demonstrate more severe effects on somatic growth and survival than either of the corresponding single homozygous mutants, showing that somatic growth and life span are supported by both activins betaA and betaB, although activin betaA plays a more substantial role.  相似文献   

20.
Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates cell proliferation, apoptosis and immune system responses. In the breast, the mammary epithelium is the primary source of TGFB1 and increased expression is associated with increased breast cancer risk. This study was conducted to investigate the roles of epithelial cell-derived TGFB1 in regulation of epithelial cell activity and macrophage phenotype in the mammary gland. Tgfb1 null mutant and wildtype mammary epithelium was transplanted into contra-lateral sides of the cleared mammary gland of TGFB1 replete scid mice. Transplanted tissue was analysed for markers of proliferation and apoptosis to determine the effect of Tgfb1 null mutation on epithelial cell turnover, and was analysed by immunohistochemistry to investigate the location, abundance and phenotype of macrophages. The number of proliferating and dying ductal epithelial cells, determined by BrdU and TUNEL, was increased by 35% and 3.3-fold respectively in mammary gland transplanted with Tgfb1 null epithelium compared to wildtype epithelium (p < 0.05). Abundance of F4/80+ macrophages in between Tgfb1 null epithelial cells compared to wildtype epithelial cells was increased by 50%. The number of iNOS+ and CCR7+ cells in the stroma surrounding Tgfb1 null alveolar epithelium was increased by 78% and 2-fold respectively, and dendriform MHC class II+ cells within ductal epithelium were decreased by 30%. We conclude that epithelial cell-derived TGFB1 in the mammary gland has two functions: (1) regulation of cellular turnover of epithelial cells, and (2) regulation of local macrophage phenotype. These findings shed new light on the diversity of roles of TGFB1 in the mammary gland which are likely to impact on breast cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号