首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant height is an important agronomic trait involved in lodging resistance and harvest index. The identification and characterization of mutants that are defective in plant height have implications for trait improvement in breeding programs. Two dominant maize dwarf mutants D8 and D9 have been well-characterized. Here, we report the characterization of a dominant maize dwarf mutant Dwarf11 (D11). Dwarf stature of D11 was mainly attributed to the inhibition of longitudinal cell elongation. The levels of bioactive GA3 were significantly lower in D11. Contrarily, D8 mutant accumulates markedly higher levels of GA3. The expression of GA biosynthetic and catabolic genes was dramatically decreased in D11. Expression variations of d8 and d9 genes were not observed in D11 mutant. Moreover, genetic suppressors of D11 were identified in inbred line Chang 7-2. Integrated omics data indicated that D11 is a novel dominant maize dwarf. The ultimate D11 gene cloning and its regulatory network elucidation may strengthen our understanding of the genetic basis of plant architecture and provide cues for breeding of crops with plant height ideotypes.  相似文献   

2.
Rice (Oryza sativa) has the potential to undergo rapid internodal elongation which determines plant height. Gibberellin is involved in internode elongation. Leucine-rich repeat receptor-like kinases (LRR-RLKs) are the largest subfamily of transmembrane receptor-like kinases in plants. LRR-RLKs play important functions in mediating a variety of cellular processes and regulating responses to environmental signals. LRK1, a PSK receptor homolog, is a member of the LRR-RLK family. In the present study, differences in ectopic expression of LRK1 were consistent with extent of rice internode elongation. Analyses of gene expression demonstrated that LRK1 restricts gibberellin biosynthesis during the internode elongation process by down-regulation of the gibberellin biosynthetic gene coding for ent-kaurene oxidase.  相似文献   

3.
4.
Plant height is one of the most important agronomic traits of plant architecture, and also affects grain yield in rice. In this study, we obtained a novel dwarf rice mutant of japonica variety Shennong9816, designated Shennong9816d. Compared with wild-type, the Shennong9816d plant height was significantly reduced, and the tiller number significantly increased. Additionally, the mutant yield component, and the number of large and small vascular bundles were significantly decreased compared with wild-type. Genetic analysis indicated that the Shennong9816d dwarf phenotype was controlled by a recessive nuclear gene, while the plant was shown to be sensitive to gibberellic acid. Using a large F2 population derived from a cross between Shennong9816d and the indica rice variety Habataki, the osh15(t) gene was fine mapped between RM20891 and RM20898, within a physical distance of 73.78 kb. Sequencing analysis showed that Shennong9816d carries a 1 bp mutation and a 30 bp insertion in the OSH15 region. These results suggest that osh15(t) is a novel allelic mutant originally derived from japonica variety Shennong9816, which may be useful for introducing the semi-dwarf phenotype to improve plant architecture in rice breeding practice.  相似文献   

5.
6.
7.
Plant height is determined by the processes of cell proliferation and elongation. Plant hormones play key roles in a species-dependent manner in these processes. We used paclobutrazol (PAC) at 400 mg·L-1 in this study to spray Agapanthus praecox ssp. orientalis plants in order to induce dwarf scape (inflorescence stem). Morphological examination showed that PAC reduced scape height by inhibiting the cell elongation by 54.56% and reducing cell proliferation by 10.45% compared to the control. Quantification and immunolocalization of endogenous gibberellins (GAs) and indole-3-acetic acid (IAA) showed that the GA1, GA3, and GA4 levels and the IAA gradient were reduced. Among these hormones, GA4 was the key component of GAs, which decreased 59.51-92.01% compared to the control in scape. The expression of cell wall synthesis related genes cellulose synthase (CESA) and UDP-glucuronic acid decarboxylase (UXS) were upregulated significantly, whereas cell wall loosening gene xyloglucan endotransglucosylase 2 (XET2) was downregulated by 99.99% surprisingly. Correlation analysis suggested GA regulated cell elongation and auxin modulated cell proliferation in Agapanthus scape. Additionally, the accumulation of sugars played roles in cell wall synthesis and cell expansion. These results indicated GA and IAA signals triggered a downstream signaling cascade, controlled cell expansion and proliferation during scape elongation.  相似文献   

8.
We report the bifunctional activity of the native ent-kaurene oxidase from Montanoa tomentosa (MtKO) and its N-terminal modified version (LMtKO) for producing both isokaurenoic acid and kaurenoic acid in Saccharomyces cerevisiae. The Km app of MtKO showed more affinity for ent-kaurene (80.5 µM) than for isokaurene (96.4 µM). Interestingly, LMtKO exhibited an increase of the affinity for isokaurene (79.6 µM) but simultaneously showed an enhancement in the Vmax for both substrates (32.6–38.9 μmol?1 mg?1 h?1). Biotransformation assays using isokaurene and yeasts containing LMtKO, resulted in 70% more production of isokaurenoic acid, when compared with the yields from yeasts expressing MtKO. Likewise, biotransformation assays using geranylgeraniol and double transformed cells of S. cerevisiae containing an optimized version the ent-kaurene synthase from Phaeosphaeria sp. L487 (optKS) and the LMtKO, produced ~25% more kaurenoic acid than the yeasts containing optKS and MtKO. The isokaurenoic acid synthesized by transgenic yeasts was tested for its anti-acetylcholinesterase and antimicrobial properties. Isokaurenoic acid generated a non-competitive inhibition on acetylcholinesterase, decreasing the Vmax from 0.0249 to 0.0104 mM min?1 but not affecting the Km (0.714 mM). The same diterpene showed antifungal activity against Fusarium oxysporum, Aspergillus niger and Phytophtora infestans with a minimum inhibitory concentration of 15.3, 18.3 and 19.2 µg mL?1, respectively.  相似文献   

9.
10.

Objectives

To characterize the ent-kaurene oxidase (KO) involved in maize (Zea mays) gibberellin (GA) biosynthesis.

Results

Two putative KO genes were identified in maize based on the homologous alignment. Biochemical characterization indicated that one of them encoded a cytochrome P450 monooxygenase (P450) CYP701A26, which reacted with ent-kaurene to form ent-kaurenoic acid, the key intermediate of GA biosynthesis. CYP701A26 showed constitutive expression in active growing tissues and no inducible expression, which led to putative designation of CYP701A26 as the ZmKO. CYP701A26 exhibited substrate promiscuity to catalyze oxidation of other labdane related diterpenes. Another maize KO homologue, CYP701A43 did not show any catalytic activities on ent-kaurene or other tested diterpenes. It exhibited inducible gene expression and might accept unknown substrates to play roles in specialized metabolism for stress response.

Conclusions

CYP701A26 was characterized to exhibit ent-kaurene oxidase activity with substrate promiscuity and might be involved in maize GA biosynthesis, and its homologue CYP701A43 did not show such function and might play roles in stress response.
  相似文献   

11.
Application of plant growth regulators (PGRs) to soybean plants is known to induce changes in nitrogenase activity in root nodules, and this led us to hypothesize that PGRs would affect nitrogenase activity in free-living rhizobia cultures. Little is known about the molecular basis of the effects of PGRs on nitrogenase activity in free-living rhizobia cultures. Therefore, a comparative study was conducted on the effects of gibberellins (GA3) and mepiquat chloride (PIX), which regulate plant growth, on the nitrogenase activity of the nitrogen-fixing bacterium Bradyrhizobium japonicum. Fix and nif gene regulation and protein expression in free-living cultures of B. japonicum were investigated using real-time PCR and two-dimensional electrophoresis after treatment with GA3 or PIX. GA3 treatment decreased nitrogenase activity and the relative expression of nifA, nifH, and fixA genes, but these effects were reversed by PIX treatment. As expected, several proteins involved in nitrogenase synthesis were down-regulated in the GA3-treated group. Conversely, several proteins involved in nitrogenase synthesis were up-regulated in the PIX-treated group, including bifunctional ornithine acetyltransferase/N-acetylglutamate synthase, transaldolase, ubiquinol-cytochrome C reductase iron-sulfur subunit, electron transfer flavoprotein subunit beta, and acyl-CoA dehydrogenase. Two-pot experiments were conducted to evaluate the effects of GA3 and PIX on nodulation and nitrogenase activity in Rhizobium-treated legumes. Interestingly, GA3 treatment increased nodulation and depressed nitrogenase activity, but PIX treatment decreased nodulation and enhanced nitrogenase activity. Our data show that the nif and fix genes, as well as several proteins involved in nitrogenase synthesis, are up-regulated by PIX and down-regulated by GA3, respectively, in B. japonicum.  相似文献   

12.
The dim1+ gene family is essential for G2/M transition during mitosis and encodes a small nuclear ribonucleoprotein that functions in the mRNA splicing machinery of eukaryotes. However, the plant homolog of DIM1 gene has not been defined yet. Here, we identified a gene named GmDim1 positioned on chromosome 9 of soybean (Glycine max (L.) Merr.) with 80% homology to other eukaryotic dim1+ family genes. A domain of soybean DIM1 protein was primarily conserved with U5 snRNP protein family and secondarily aligned with mitotic DIM1 protein family. The GmDim1 gene was expressed constitutively in all soybean organs. The transgenic Arabidopsis thaliana (L.) plants overexpressing GmDim1 showed early flowering and stem elongation, produced multiple shoots and continued flowering after the post-flowering stage. DIM1 proteins transiently expressed in onion cells were localized in the nucleus with dense deposition in the nucleolus. Therefore, we propose that the soybean GmDim1 gene is a component of plant U5 snRNP involved in mRNA splicing and normal progress of plant growth.  相似文献   

13.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

14.
YUCCA is an important enzyme which catalyzes a key rate-limiting step in the tryptophan-dependent pathway for auxin biosynthesis and implicated in several processes during plant growth and development. Genome wide analyses of YUCCA genes have been performed in Arabidopsis, rice, tomato, and Populus, but have never been characterized in soybean, one of the most important oil crops in the world. In this study, 22 GmYUCCA genes (GmYUCCA1-22) were identified and named based on soybean whole-genome sequence. Phylogenetic analysis of YUCCA proteins from Glycine max, Arabidopsis, Oryza sativa, tomato, and Populus euphratica revealed that GmYUCCA proteins could be divided into four subfamilies. Quantitative real-time RT-PCR (qRT-PCR) analysis showed that GmYUCCA genes have diverse expression patterns in different tissues and under various stress treatments. Compared to the wild type (WT), the transgenic GmYUCCA5 Arabidopsis plants displayed downward curling of the leaf blade margin, evident apical dominance, higher plant height, and shorter length of siliques. Our results provide a comprehensive analysis of the soybean YUCCA gene family and lay a solid foundation for further experiments in order to functionally characterize these gene members during soybean growth and development.  相似文献   

15.
Plant height and grain shape are important traits that may affect yield in rice, and they therefore have enormous importance in breeding. A dwarf small-grain mutant (S525) was identified among progeny of the Indica rice restorer line ‘Xida 1B’ (wild type) raised from seeds treated with ethyl methanesulfonate. The dwarf and small-grain phenotypes were stably inherited after multi-generation selfing. Field-grown mutant plants showed the phenotypes of dwarfism, broad leaves, and small round grains. Genetic mapping and sequencing confirmed that S525 was a novel d1-allelic mutant. A single-base transition (G to A) in the functional dwarfism gene D1 at the conjunction site of the 11th intron caused excision or duplication of the 11th exon in the mRNA and resulted in translation of a defective Gα protein. The S525 showed enhanced salt tolerance compared with the wild type (WT), and the expression of genes associated with salt tolerance quantitatively increased in response to treatment with 200 mM NaCl. The S525 may be useful for future investigation of Gα functions and in the breeding of new dwarf rice cultivars.  相似文献   

16.
Thidiazuron [N-phenyl-N-(1, 2, 3-thidiazol-5-yl) urea, TDZ] treatment significantly improved shoot morphogenesis of Saussurea involucrata Kar. Et Kir (S. involucrata) leaf explants. The biochemical mechanisms underlying TDZ-induced shoot organogenesis were investigated by measuring endogenous plant growth hormones, H2O2, as well as the activities of superoxide dismutase (SOD) and catalase (CAT). The levels of endogenous gibberellic A3 (GA3) and zeatin (ZT) significantly increased in leaf explants subject to a 28-day treatment than the controls. However, extending exposure time to TDZ inhibited GA3 accumulation. At the same time, the SOD activity increased significantly until the 28th of TDZ treatment time and the CAT activity reduced simultaneously, which was closely linked with the significant increase in H2O2 concentrations in the explants. And there was a sharply promotion after the 35 day of culture time if the plant tissue was always in medium contained, which was in company with the cell activity decreased. We propose that a combination of increased GA3, ZT, and H2O2 concentration is the basis for the enhanced shoot morphogenesis in response to TDZ treatment. These results provide a starting point for an improved understanding of the biochemical mechanisms underlying TDZ-induced shoot organogenesis of S. involucrata.  相似文献   

17.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

18.
Endophytes can serve as plant growth promoters as they secret a vast array of phytohormones to support host plants. Keeping the growth promoting activity of the endophytes in view, two endophytic fungi, Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 have been isolated from the roots of Oxalis corniculata. The isolates have been screened initially for growth promoting activities, including siderophores activity, phosphate solubilization, and secreation of indole acetic acid and gibberellins. Further, the isolates have assayed for the ability to promote the growth of mutant rice Waito-C. The plants associated with TS1 and BRL1 have shown higher chlorophyll content, root-shoot length, and biomass production. The growth promoting activity of the endophytes can be attributed to the various types of GAs and IAA that have been observed in the culture filtrates of the endophytes by the Gas chromatography/mass spectrometry (GC/MS). The GC/MS analysis revealed the presence of different gibberellins concentrations (ng/ml) in TS1 and BRL1 culture filtrate, i.e. GA1 (0.091?±?0.009, 0.392?±?0.007), GA3 (0.324?±?0.077, 0.089?±?0.0007) and GA7 (0.023?±?0.002, 0.492?±?0.005), respectively. Besides, a significant up regulation of plant endogenous GA1 (12.443?±?0.454 and 15.434?±?0.245) has been obsereved in TS1 and BRL1 associated plants compared to the control. Moreover, semi quantitative RT-PCR has confirmed the presence/invovment of GA pathways genes (P50–1, P450–3, P450–4, ggs2, and des). The results conclude that the endophytes isolated in this study can ably synthesize bioactive compounds, which play an important role in plant growth promotion.  相似文献   

19.

Key message

A novel dwarf cucumber mutant, scp-2, displays a typical BR biosynthesis-deficient phenotype, which is due to a mutation in CsDET2 for a steroid 5-alpha-reductase.

Abstract

Brassinosteroids (BRs) are a group of plant hormones that play important roles in the development of plant architecture, and extreme dwarfism is a typical outcome of BR-deficiency. Most cucumber (Cucumis sativus L.) varieties have an indeterminate growth habit, and dwarfism may have its value in manipulation of plant architecture and improve production in certain production systems. In this study, we identified a spontaneous dwarf mutant, super compact-2 (scp-2), that also has dark green, wrinkle leaves. Genetic analyses indicated that scp-2 was different from two previously reported dwarf mutants: compact (cp) and super compact-1 (scp-1). Map-based cloning revealed that the mutant phenotype was due to two single nucleotide polymorphism and a single-base insertion in the CsDET2 gene that resulted in a missense mutation in a conserved amino acid and thus a truncated protein lacking the conserved catalytic domains in the predicted steroid 5α-reductase protein. Measurement of endogenous hormone levels indicated a reduced level of brassinolide (BL, a bioactive BR) in scp-2, and the mutant phenotype could be partially rescued by the application of epibrassinolide (EBR). In addition, scp-2 mutant seedlings exhibited dark-grown de-etiolation, and defects in cell elongation and vascular development. These data support that scp-2 is a BR biosynthesis-deficient mutant, and that the CsDET2 gene plays a key role in BR biosynthesis in cucumber. We also described the systemic BR responses and discussed the specific BR-related phenotypes in cucumber plants.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号