首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The three-legged or triskelion shape of clathrin is critical for the formation of polyhedral lattices around clathrin-coated vesicles. Filamentous legs radiate from a common vertex, with amino acids 1550–1615 contributed by each leg to define the trimerization domain (Liu S-H, Wong ML, Craik CS, Brodsky FM. Cell 1995; 83: 257–267). Within this amino acid stretch there are 3 cysteines at positions 1565, 1569 and 1573 which are completely conserved in higher mammals from humans to C. elegans . The cysteine-to-serine mutation at position 1573 was observed to have the largest impact on clathrin structure and self-assembly. We have also found that Cysteine 1528 located near the boundary between the proximal region and trimerization domain mediated the formation of nonproductive clathrin aggregates when bound light chain subunits were removed. However, when light chains were added back, the ability of this cysteine to form disulfide bridges between individual clathrin molecules was blocked, suggesting bound light chain interacted with Cysteine 1528 to prevent aggregation. This new information serves to map the orientation of the light chain subunit in the vicinity of the trimerization domain and supports previous models that indicate involvement of the trimerization domain in LC binding (Chen C-Y, Reese ML, Hwang PK, Ota N, Agard D, Brodsky FM. EMBO J 2002; 21: 6072–6082; Pishvaee B, Munn A, Payne GS. EMBO J 1997; 16: 2227–2239).  相似文献   

2.
In clathrin-mediated membrane traffic, clathrin does not bind directly to cargo and instead binds to adaptors that mediate this function. For endocytosis, the main adaptor is the adaptor protein (AP)-2 complex, but it is uncertain how clathrin contacts AP-2. Here we tested in human cells the importance of the three binding sites that have been identified so far on the N-terminal domain (NTD) of clathrin. We find that mutation of each of the three sites on the NTD, alone or in combination, does not block clathrin/AP-2-mediated endocytosis in the same way as deletion of the NTD. We report here the fourth and final site on the NTD that is required for clathrin/AP-2-mediated endocytic function. Each of the four interaction sites can operate alone to mediate endocytosis. The observed functional redundancy between interaction sites on the NTD explains how productivity of clathrin-coated vesicle formation is ensured.  相似文献   

3.
The clathrin triskelion is composed of three light chain (LC) and three heavy chain (HC) subunits. Cellular control of clathrin function is thought to be aimed at the LC subunit, mainly on the basis of structural information. To test this hypothesis in vivo, we used evanescent-wave photobleaching recovery to study clathrin exchange from single pits using LC (LCa and LCb) and HC enhanced green fluorescent protein fusion constructs. The recovery signal was corrected for cytosolic diffusional background, yielding the pure exchange reaction times. For LCa, we measured an unbinding time constant tau(LEa) = 18.9 +/- 1.0 seconds at room temperature, faster than previously published; for LCb, we found tau(LCb) = 10.6 +/- 1.9 seconds and for HC tau(HC) = 15.9 +/- 1.0 seconds. Sucrose treatment, ATP or Ca(2+) depletion blocked exchange of LCa completely, but only partially of HC, lowering its time constant to tau = 10.0 +/- 0.9 seconds, identical to the one for LCb exchange. The latter was also not blocked by Ca(2+) depletion or sucrose. We conclude that HCs bound both to LCa and to LCb contribute side by side to pit formation in vivo, but the affinity of LCa-free HC in pits is reduced, and the Ca(2+)- and ATP-mediated control of clathrin function is lost.  相似文献   

4.
Eleanor A. Latomanski 《Autophagy》2018,14(10):1710-1725
Coxiella burnetii is an intracellular bacterial pathogen which causes Q fever, a human infection with the ability to cause chronic disease with potentially life-threatening outcomes. In humans, Coxiella infects alveolar macrophages where it replicates to high numbers in a unique, pathogen-directed lysosome-derived vacuole. This compartment, termed the Coxiella-containing vacuole (CCV), has a low internal pH and contains markers both of lysosomes and autophagosomes. The CCV membrane is also enriched with CLTC (clathrin heavy chain) and this contributes to the success of the CCV. Here, we describe a role for CLTC, a scaffolding protein of clathrin-coated vesicles, in facilitating the fusion of autophagosomes with the CCV. During gene silencing of CLTC, CCVs are unable to fuse with each other, a phenotype also seen when silencing genes involved in macroautophagy/autophagy. MAP1LC3B/LC3B, which is normally observed inside the CCV, is excluded from CCVs in the absence of CLTC. Additionally, this study demonstrates that autophagosome fusion contributes to CCV size as cell starvation and subsequent autophagy induction leads to further CCV expansion. This is CLTC dependent, as the absence of CLTC renders autophagosomes no longer able to contribute to the expansion of the CCV. This investigation provides a functional link between CLTC and autophagy in the context of Coxiella infection and highlights the CCV as an important tool to explore the interactions between these vesicular trafficking pathways.  相似文献   

5.
While clathrin heavy chains from different species are highly conserved in amino acid sequence, clathrin light chains are much more divergent. Thus clathrin light chain may have different functions in different organisms. To investigate clathrin light chain function, we cloned the clathrin light chain, clcA, from Dictyostelium and examined clathrin function in clcA– mutants. Phenotypic deficiencies in development, cytokinesis, and osmoregulation showed that light chain was critical for clathrin function in Dictyostelium . In contrast with budding yeast, we found the light chain did not influence steady-state levels of clathrin, triskelion formation, or contribute to clathrin over-assembly on intracellular membranes. Imaging GFP-CHC in clcA– mutants showed that the heavy chain formed dynamic punctate structures that were remarkably similar to those found in wild-type cells. However, clathrin light chain knockouts showed a decreased association of clathrin with intracellular membranes. Unlike wild-type cells, half of the clathrin in clcA– mutants was cytosolic, suggesting that the absence of light chain compromised the assembly of triskelions onto intracellular membranes. Taken together, these results suggest a role for the Dictyostelium clathrin light chain in regulating the self-assembly of triskelions onto intracellular membranes, and demonstrate a crucial contribution of the light chain to clathrin function in vivo .  相似文献   

6.
Chojnowski JL  Kimball RT  Braun EL 《Gene》2008,410(1):89-96
Neoaves is the most diverse major avian clade, containing ~95% of avian species, and it underwent an ancient but rapid diversification that has made resolution of relationships at the base of the clade difficult. In fact, Neoaves has been suggested to be a "hard" polytomy that cannot be resolved with any amount of data. However, this conclusion was based on slowly evolving coding sequences and ribosomal RNAs and some recent studies using more rapidly evolving intron sequences have suggested some resolution at the base of Neoaves. To further examine the utility of introns and exons for phylogenetics, we sequenced parts of two unlinked clathrin heavy chain genes (CLTC and CLTCL1). Comparisons of phylogenetic trees based upon individual partitions (i.e. introns and exons), the combined dataset, and published phylogenies using Robinson-Foulds distances (a metric of topological differences) revealed more similarity than expected by chance, suggesting there is structure at the base of Neoaves. We found that introns provided more informative sites, were subject to less homoplasy, and provided better support for well-accepted clades, suggesting that intron evolution is better suited to determining closely-spaced branching events like the base of Neoaves. Furthermore, phylogenetic power analyses indicated that existing molecular datasets for birds are unlikely to provide sufficient phylogenetic information to resolve relationships at the base of Neoaves, especially when comprised of exon or other slowly evolving regions. Although relationships among the orders in Neoaves cannot be definitively established using available data, the base of Neoaves does not appear to represent a hard polytomy. Our analyses suggest that large intron datasets have the best potential to resolve relationships among avian orders and indicate that the utility of intron data for other phylogenetic questions should be examined.  相似文献   

7.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

8.
Plant Cell, Tissue and Organ Culture (PCTOC) - Transgenic Nicotiana tabacum cells constitutively expressing the C-terminal domain (hub domain) of clathrin heavy chain, as a dominant negative...  相似文献   

9.
In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking.  相似文献   

10.
Cargo transport by microtubule‐based motors is essential for cell organisation and function. The Bicaudal‐D (BicD) protein participates in the transport of a subset of cargoes by the minus‐end‐directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co‐precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin‐mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high‐frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin‐associated trafficking processes and show a novel requirement for microtubule‐based motor transport in the synaptic vesicle cycle.  相似文献   

11.
During clathrin‐mediated endocytosis, adaptor proteins play central roles in coordinating the assembly of clathrin coats and cargo selection. Here we characterize the binding of the yeast endocytic adaptor Sla1p to clathrin through a variant clathrin‐binding motif that is negatively regulated by the Sla1p SHD2 domain. The crystal structure of SHD2 identifies the domain as a sterile α‐motif (SAM) domain and shows a propensity to oligomerize. By co‐immunoprecipitation, Sla1p binds to clathrin and self‐associates in vivo. Mutations in the clathrin‐binding motif that abolish clathrin binding and structure‐based mutations in SHD2 that impede self‐association result in endocytosis defects and altered dynamics of Sla1p assembly at the sites of endocytosis. These results define a novel mechanism for negative regulation of clathrin binding by an adaptor and suggest a role for SAM domains in clathrin‐mediated endocytosis.  相似文献   

12.
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans‐Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc‐YR) , which fused the N‐terminus of yeast CHC (1–1312) to the rat CHC residues 1318–1675, including the CHC trimerization region. The novel CHC‐YR allele encoded a stable protein that fractionated as a trimer. CHC‐YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC‐YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc‐YR‐GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1‐GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC‐YR, indicating that Chc‐YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc‐YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non‐trimerization roles for the clathrin LC.  相似文献   

13.
The Dna J homologue, auxilin, acts as a co-chaperone for Hsc70 in the uncoating of clathrin-coated vesicles during endocytosis. Biochemical studies have aided understanding of the uncoating mechanism but until now there was no structural information on how auxilin interacts with the clathrin cage. Here we have determined the three-dimensional structure of a complex of auxilin with clathrin cages by cryo-electron microscopy and single particle analysis. We show that auxilin forms a discrete shell of density on the inside of the clathrin cage. Peptide competition assays confirm that a candidate clathrin box motif in auxilin, LLGLE, can bind to a clathrin construct containing the beta-propeller domain and also displace the well-characterised LLNLD clathrin box motif derived from the beta-adaptin hinge region. The means by which auxilin could both aid clathrin coat assembly and displace clathrin from AP2 during uncoating is discussed.  相似文献   

14.
15.
New faces of the familiar clathrin lattice   总被引:1,自引:1,他引:0  
The clathrin triskelion self-assembles into a lattice that coats transport vesicles participating in several key membrane traffic pathways. A new model of a clathrin lattice at approximately 8 angstrom resolution, generated by Fotin et al. (Nature 2004;432:573) confirmed the basic structural features of clathrin that were defined over many years of biochemical and structural analysis. In addition, new structural features of the clathrin trimerization domain were modelled for the first time, and the predictions correlated well with previous biochemical studies. A second model, placing auxilin within the lattice suggested a possible lattice contact targeted during lattice disassembly (Fotin et al. Nature 2004;432:649). This contact predicts interactions of the newly modelled trimerization domain with a newly defined extension of the clathrin triskelion, the ankle domain. These aspects of the new models were emphasized in the published reports describing them and in recent commentary (Brodsky, Nature 2004;432:568). Also emerging from the new models is a better picture of how the clathrin structure is distributed throughout the lattice, allowing the first predictions of interacting molecular interfaces contributing to contacts in the assembled lattice. The focus of this interchange is to emphasize these additional features revealed by the recently published models from Fotin and colleagues.  相似文献   

16.
We report the cloning and analysis of a clathrin heavy-chain cDNA from the eukaryotic microorganism, Dictyostelium discoideum. A single gene, designated chcA, for the clathrin heavy chain encoded a protein of 1,694 amino acids with a molecular mass of 193,618 daltons. Comparison of the amino acid sequence with the rat and with the yeast sequence showed that the highly conserved protein was more similar to the mammalian clathrin heavy chain (57% identity) than to the yeast heavy chain (45% identity). The mRNA for the clathrin heavy chain was regulated during development. mRNA levels were highest during vegetative growth and declined as the cells progressed through the 24-hr developmental cycle. The concentration of clathrin heavy-chain protein was the same in cells grown in liquid media (high rates of pinocytosis) as in cells grown with bacteria (low rates of pinocytosis), which suggests that regulation of pinocytosis in these cells is not achieved by altering the concentration of clathrin.  相似文献   

17.
A monoclonal antibody to the heavy chain of clathrin.   总被引:21,自引:1,他引:21       下载免费PDF全文
Monoclonal antibodies have been raised to pig brain triskelions and one clone, DC41, was found to recognize the clathrin heavy chain by immunoblotting. However, both by immunofluorescence and immunoelectron microscopy, and in complete contrast to polyclonal anti-clathrin antibodies, monoclonal DC41 did not label either coated pits or coated vesicles anywhere in the cell. Instead it appeared to label the cell cytoplasm. These data suggest that DC41 recognizes a cytoplasmic form of clathrin, perhaps that form produced by uncoating of coated vesicles which is then ready to re-build another coated pit.  相似文献   

18.
Hiraga A  Morrice N  Honda E  Tamura S  Munakata H 《FEBS letters》2006,580(5):1425-1430
Clathrin light chain (CL) b purified from bovine brain postmicrotubule supernatant and identified by mass spectrometry potently inhibited a catalytic activity of a major protein phosphatase (PP) that was copurified with microtubules and recognized by antiPP1 antibodies. CLb similarly affected the catalytic subunit and holoenzyme of the PP, little inhibiting the activity of PP2A. Although the CLb from clathrin-coated vesicles was several hundredfold weaker than our purified CLb, the CLb in the postmicrotubule supernatant, independent of whether it was sedimentable or soluble, was as active as the purified CLb. Thus CLb may be a potent regulator of the PP.  相似文献   

19.
Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies.  相似文献   

20.
Conventional kinesin, kinesin-I, is a heterotetramer of two kinesin heavy chain (KHC) subunits (KIF5A, KIF5B, or KIF5C) and two kinesin light chain (KLC) subunits. While KHC contains the motor activity, the role of KLC remains unknown. It has been suggested that KLC is involved in either modulation of KHC activity or in cargo binding. Previously, we characterized KLC genes in mouse (Rahman, A., D.S. Friedman, and L.S. Goldstein. 1998. J. Biol. Chem. 273:15395-15403). Of the two characterized gene products, KLC1 was predominant in neuronal tissues, whereas KLC2 showed a more ubiquitous pattern of expression. To define the in vivo role of KLC, we generated KLC1 gene-targeted mice. Removal of functional KLC1 resulted in significantly smaller mutant mice that also exhibited pronounced motor disabilities. Biochemical analyses demonstrated that KLC1 mutant mice have a pool of KIF5A not associated with any known KLC subunit. Immunofluorescence studies of sensory and motor neuron cell bodies in KLC1 mutants revealed that KIF5A colocalized aberrantly with the peripheral cis-Golgi marker giantin in mutant cells. Striking changes and aberrant colocalization were also observed in the intracellular distribution of KIF5B and beta'-COP, a component of COP1 coatomer. Taken together, these data best support models that suggest that KLC1 is essential for proper KHC activation or targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号