首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathway leading to the origin of life presumably included a process by which polymers were synthesized abiotically from simpler compounds on the early Earth, then encapsulated to form protocells. Previous studies have reported that mineral surfaces can concentrate and organize activated mononucleotides, thereby promoting their polymerization into RNA-like molecules. However, a plausible prebiotic activation mechanism has not been established, and minerals cannot form cellular compartments. We are exploring ways in which nonactivated mononucleotides can undergo polymerization and encapsulation. We found that small yields of RNA-like molecules are synthesized by a condensation reaction when mixtures of amphiphilic lipids and mononucleotides are exposed to cycles of dehydration and rehydration. The lipids concentrate and organize the monomers within multilamellar liquid-crystalline matrices that self-assemble in the dry state. The chemical potential driving the polymerization reaction is supplied by the anhydrous conditions in which water becomes a leaving group, with heat providing activation energy. Significantly, the polymeric products are encapsulated in trillions of microscopic compartments upon rehydration. Each compartment is unique in its composition and contents, and can be considered to be an experiment in a natural version of combinatorial chemistry that would be ubiquitous in the prebiotic environment. A successful experiment would be a compartment that captured polymers capable of catalyzing their own replication. If this can be reproduced in the laboratory, it would represent a significant step toward understanding the origin of cellular life.  相似文献   

2.
Nucleic acid synthesis is precisely controlled in living organisms by highly evolved protein enzymes. The remarkable fidelity of information transfer realized between template and product strands is the result of both the spatial selectivity of the polymerase active site for Watson-Crick base pairs at the point of nucleotide coupling and subsequent proof-reading mechanisms. In the absence of naturally derived polymerases, in vitro template-directed synthesis by means of chemically activated mononucleotides has proven remarkably inefficient and error-prone. Nevertheless, the spontaneous emergence of RNA polymers and their protein-free replication is frequently taken as a prerequisite for the hypothetical 'RNA world'. We present two specific difficulties that face the de novo synthesis of RNA-like polymers in a prebiotic (enzyme-free) environment: nucleoside base selection and intramolecular strand cyclization. These two problems are inherent to the assumption that RNA formed de novo from pre-existing, chemically-activated mononucleotides in solution. As a possible resolution to these problems, we present arguments and experimental support for our hypothesis that small molecules (referred to as 'molecular midwives') and alternative backbone linkages (under equilibrium control) facilitated the emergence of the first RNA-like polymers of life.  相似文献   

3.
We previously reported that 5′-mononucleotides organized within a multilamellar lipid matrix can produce oligomers in the anhydrous phase of hydration–dehydration (HD) cycles. However, hydrolysis of oligomers can occur during hydration, and it is important to better understand the steady state in which ester bond synthesis is balanced by hydrolysis. In order to study condensation products of mononucleotides and hydrolysis of their polymers, we established a simulation of HD cycles that would occur on the early Earth when volcanic land masses emerged from the ocean over 4 billion years ago. At this stage on early Earth, precipitation produced hydrothermal fields characterized by small aqueous pools undergoing evaporation and refilling at elevated temperatures. Here, we confirm that under these conditions, the chemical potential made available by cycles of hydration and dehydration is sufficient to drive synthesis of ester bonds. If 5′-mononucleotides are in solution at millimolar concentrations, then oligomers resembling RNA are synthesized and exist in a steady state with their monomers. Furthermore, if the mononucleotides can form complementary base pairs, then some of the products have properties suggesting that secondary structures are present, including duplex species stabilized by hydrogen bonds.  相似文献   

4.
We present simulations investigating the effects of solvent quality on the dynamics of flexible (RNA-like) and semiflexible (DNA-like) polymers ejecting from spherical viral capsids. We find that the mean ejection time increases and the ejection time distributions are broadened as the solvent quality decreases. Our results thus suggest that DNA ejection may be very efficiently controlled by tuning the salt concentration in the environment, in agreement with recent experimental findings. We also observe random pauses in the ejection. These become extremely long for semiflexible polymers at lower solvent quality, and we interpret this as a signature of a low driving force for ejection. We find that, for most polymers, ejection is an all-or-nothing process at the solvent conditions we investigated: polymers normally completely eject once the process is initiated.  相似文献   

5.
6.
The de novo synthesis of α-amylase in barley endosperm and isolated aleurone layers is induced by 3′,5′-cyclic purine mononucleotides and gibberellic acid. The induction of α-amylase by cyclic purine mononucleotides is prevented by 2,4-DNP, inhibitors of RNA and protein syntheses, CCC, AMO-1618 and phosfon. The induction of α-amylase formation by 3′,5′-cyclic purine mononucleotides, but not by gibberellic acid, is also blocked by inhibitors of DNA synthesis. Extracts from cyclic AMP-treated endosperm halves exhibit a characteristic gibberellin-like activity which is detectable within 12 hours from the addition of the cyclic AMP. On paper chromatograms this gibberellin-like activity is located at the Rf typical for GA3. Its formation is prevented by inhibitors of DNA synthesis, CCC and AMO-1618. Glucose inhibits the formation of α-amylase induced by gibberellic acid. Glucose has no effect on the cAMP-induced gibberellin biosynthesis. The evidence shows that the cyclic purine mononucleotides induce DNA synthesis, which results in gibberellin biosynthesis, which in turn activates the synthesis of α-amylase.  相似文献   

7.
The discovery of catalytic RNA has revolutionised modern molecular biology and bears important implications for the origin of Life research. Catalytic RNA, in particular self-replicating RNA, prompted the hypothesis of an early “RNA world” where RNA molecules played all major roles such information storage and catalysis. The actual role of RNA as primary actor in the origin of life has been under debate for a long time, with a particular emphasis on possible pathways to the prebiotic synthesis of mononucleotides; their polymerization and the possibility of spontaneous emergence of catalytic RNAs synthesised under plausible prebiotic conditions. However, little emphasis has been put on the chemical reality of an RNA world; in particular concerning the chemical constrains that such scenario should have met to be feasible. This paper intends to address those concerns with regard to the achievement of high local RNA molecules concentration and the aetiology of unique sequence under plausible prebiotic conditions. Presented at: International School of Complexity – 4th Course: Basic Questions on the Origins of Life; “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, 1–6 October 2006.  相似文献   

8.
A prebiotic scenario is proposed, based on the recent "domain hypothesis" model (Lahav, 1989, J. molec. Evol. 29, 475-479), suggested for domain propagation of RNA-like molecules in a fluctuating environment. The same system is suggested now not only for the evolution of ribozymes, but also for the evolution of directed peptide synthesis, as follows: Short, self-structured strands (termed prebioectons), each possessing a templatable domain which is chargeable by an amino acid, are the predecessors of tRNA (proto-tRNA). Complementary domains are formed on these prebioectons during an environmental cycle such as wetting-drying, followed by their dissociation from their template domain and ligation, to form the predecessor of mRNA (proto-mRNA). The evolution of directed peptide synthesis is suggested to be based on the ability of the charged prebioectons to attach preferentially to their complementary domains on the proto-mRNA. Two stages of this process are envisioned, namely: (a) Template-directed, random peptide synthesis taking place when non-specifically-charged prebioectons are sequentially attached each to its complementary domain on the proto-mRNA, followed by peptide bond formation. (b) Template-and-sequence-directed peptide synthesis, which can be realized after the "invention" of a catalytic molecule capable of specifically charging a proto-tRNA by an amino acid; this is the crucial evolutionary stage, where a crude genetic code becomes functional. Gradually, catalytic peptides and ribozymes are selected for their functions and evolve, while being encoded in the primitive "memory" of the emerging system. Thus, rather than the RNA monopoly postulated by the RNA World hypothesis, an early co-evolution of primitive enzymes and ribozymes is suggested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The origin of the first RNA polymers is central to most current theories for the origin of life. Difficulties associated with the prebiotic formation of RNA have lead to the general consensus that a simpler polymer preceded RNA. However, polymers proposed as possible ancestors to RNA are not much easier to synthesize than RNA itself. One particular problem with the prebiotic synthesis of RNA is the formation of phosphoester bonds in the absence of chemical activation. Here we demonstrate that glyoxylate (the ionized form of glyoxylic acid), a plausible prebiotic molecule, represents a possible ancestor of the phosphate group in modern RNA. Although in low yields (∼ 1%), acetals are formed from glyoxylate and nucleosides under neutral conditions, provided that metal ions are present (e.g., Mg2+), and provided that water is removed by evaporation at moderate temperatures (e.g., 65 C), i.e. under “drying conditions”. Such acetals are termed ga-dinucleotides and possess a linkage that is analogous to the backbone in RNA in both structure and electrostatic charge. Additionally, an energy-minimized model of a gaRNA duplex predicts a helical structure similar to that of A-form RNA. We propose that glyoxylate-acetal linkages would have had certain advantages over phosphate linkages for early self-replicating polymers, but that the distinct functional properties of phosphoester and phosphodiester bonds would have eventually lead to the replacement of glyoxylate by phosphate.  相似文献   

10.
Eggs of Bombyx mori are aroused from diapause by long-term chilling and develop when transferred to 25°C. During the first 20 hr of post-diapause development, the polysome content and the presumed rate of protein synthesis increase about 3-fold, while the ribosome content and the total RNA content increase only 1.1-fold. In this study, total RNAs were extracted from chilled eggs (termed 0 hr of development), and post-diapause eggs at 10 and 20 hr of development. The RNAs were purified further by high pressure liquid chromatography to remove RNA-like oligonucleotides. On translation in a protein-synthesizing system derived from wheat germ with a subsaturating amount of RNA, no difference was found in the relative amounts of translatable mRNA activity at 10 and 20 hr of development from that at 0 hr. Moreover, the translation products of the different RNA preparations in a rabbit reticulocyte lysate system appeared very similar when separated by gel electrophoresis and located by fluorography. These facts suggest that protein synthesis in early post-diapause development is controlled at a translational level.  相似文献   

11.
Madera RF  Wang JP  Libraty DH 《PloS one》2011,6(12):e29412
There is a growing need for novel vaccine adjuvants that can provide safe and potent T-helper type 1 (Th1) activity. RNA-like immune response modifiers (IRMs) are candidate T-cell adjuvants that skew acquired immune responses towards a Th1 phenotype. We set out to delineate the essential signaling pathways by which the RNA-like IRMs, resiquimod (R-848) and polyinosinic:polycytidylic acid (poly I:C), augment CD4+ T-helper 1 (Th1) responses. Highly purified murine conventional dendritic cells (cDCs) and conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic mixed leukocyte reactions. The activation of CD4+ Th1 cells was examined utilizing cells from mice deficient in specific RNA-sensing pattern recognition receptors and signaling mediators. R-848 and poly I:C stimulation of Type I interferon production and signaling in cDCs was essential but not sufficient for driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C activation of MyD88-independent signaling pathways. The in vitro data show that CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical combination of early and rapid Type I interferon, IL-1α and IL-1β production. These results provide important insights into the key signaling pathways responsible for RNA-like IRM CD4+ Th1 activation. A better understanding of the critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 responses is relevant to the rational design of improved vaccine adjuvants.  相似文献   

12.
Nanopores and nucleic acids: prospects for ultrarapid sequencing   总被引:10,自引:0,他引:10  
DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.  相似文献   

13.
The prebiotic role of adenine: A critical analysis   总被引:2,自引:0,他引:2  
Adenine plays an essential role in replication in all known living systems today, and is prominent in many other aspects of biochemistry. It occurs among the products of oligomerization of HCN. These circumstances have stimulated the idea that adenine was a component in a replication system that was present at the start of life. Such replicators have included not only RNA, but also a number of simpler RNA-like alternatives which utilize a simpler backbone.Despite these encouraging indicators, a consideration of the chemical properties of adenine reveals reasons that disfavor its participation in such a role. These properties include the following: (1) Adenine synthesis requires HCN concentrations of at least 0.01 M. Such concentrations would be expected only in unique circumstances on the early Earth. Adenine yields are low in prebiotic simulations, and if a subsequent high-temperature hydrolysis step is omitted, the reported yield does not represent adenine itself, but 8-substituted adenines and other derivatives. (2) Adenine is susceptibile to hydrolysis (the half life for deamination at 37 °C, pH 7, is about 80 years), and to reaction with a variety of simple electrophiles, forming a multiplicity of products. Its accumulation would not be expected over a geological time scale, and its regioselective incorporation into a replicator appears implausible. (3) The adenine-uracil interaction, which involves two hydrogen bonds (rather than three, as in guanine-cytosine pairing) is weak and nonspecific. Pairing of adenine with many other partners has been observed with monomers, synthetic oligonucleotides and in RNA. The hydrogen-bonding properties of adenine appear inadequate for it to function in any specific recognition scheme under the chaotic conditions of a prebiotic soup.New and fundamental discoveries in the chemistry of adenine would be needed to reverse this perception. An alternative and attractive possibility is that some other replicator preceeded RNA (or RNA-like substances) in the origin of life.  相似文献   

14.
The bodonids and cryptobiids represent an early diverged sister group to the trypanosomatids among the kinetoplastid protozoa. The trypanosome type of uridine insertion-deletion RNA editing was found to occur in the cryptobiid fish parasite Trypanoplasma borreli. A pan-edited ribosomal protein, S12, and a novel 3'- and 5'-edited cytochrome b, in addition to an unedited cytochrome oxidase III gene and an apparently unedited 12S rRNA gene, were found in a 6-kb fragment of the 80- to 90-kb mitochondrial genome. The gene order differs from that in trypanosomatids, as does the organization of putative guide RNA genes; guide RNA-like molecules are transcribed from tandemly repeated 1-kb sequences organized in 200- and 170-kb molecules instead of minicircles. The presence of pan-editing in this lineage is consistent with an ancient evolutionary origin of this process.  相似文献   

15.
A factor isolated from rabbit reticulocyte white ghosts by Triton X-100 treatment blocks protein synthesis at the elongation-termination stage. Factor-treated ribosomes were found to have an identical buoyant density to that of control ribosomes. When incubated with either reticulocyte ribosomes or ribosomal RNA, the factor products specific cuts in the 28-S ribosomal RNA compenent without damaging the 18-S RNA. Incubations of pancreatic or T1 RNase, with ribosomal RNA, at similar protein-synthesis inhibitory concentrations effected a complete breakdown to oligo and mononucleotides. When challenged with isolated 28-S or 18-S reticulocyte ribosomal RNA, the highly purified factor only attacked the 28-S RNA species. There was no accumulation of nucleotides or oligonucleotides and we concluded that the membrane factor causes inhibition of protein synthesis by having a specific endonucleolytic cleavage activity.  相似文献   

16.
The phase character of lipid peroxidation has been found in the rabbit adrenal cortex in the process of adaptation to extreme loads. Under acute stress the activation of lipid peroxidation is directly dependent on the hormonal synthesis processes. Under conditions of the prolonged stress factor an enhancement of the lipid peroxidation intensity in the adrenal cortex coincides with a decrease in the steroidogenesis rate.  相似文献   

17.
18.
Nonenzymatic copying of RNA templates with activated nucleotides is a useful model for studying the emergence of heredity at the origin of life. Previous experiments with defined-sequence templates have pointed to the poor fidelity of primer extension as a major problem. Here we examine the origin of mismatches during primer extension on random templates in the simultaneous presence of all four 2-aminoimidazole-activated nucleotides. Using a deep sequencing approach that reports on millions of individual template-product pairs, we are able to examine correct and incorrect polymerization as a function of sequence context. We have previously shown that the predominant pathway for primer extension involves reaction with imidazolium-bridged dinucleotides, which form spontaneously by the reaction of two mononucleotides with each other. We now show that the sequences of correctly paired products reveal patterns that are expected from the bridged dinucleotide mechanism, whereas those associated with mismatches are consistent with direct reaction of the primer with activated mononucleotides. Increasing the ratio of bridged dinucleotides to activated mononucleotides, either by using purified components or by using isocyanide-based activation chemistry, reduces the error frequency. Our results point to testable strategies for the accurate nonenzymatic copying of arbitrary RNA sequences.  相似文献   

19.
20.
Unwinding of double-stranded RNA by nuclear helicases can lead to modification of adenosine-residues, resulting in inosine. During initiation of protein synthesis the 5' untranslated region of an mRNA is unwound by eukaryotic initiation factors (eIF) -4A and -4B. In this work we investigated the possible nucleotide modification after unwinding by eIF-4A and eIF-4B of in vitro synthesized, labeled RNA. The products of unwinding were analyzed by gel-electrophoresis and, after nuclease digestion, by thin layer chromatography of the mononucleotides. Crude protein fractions unwound the duplex RNA and converted part of the AMP-residues into IMP-residues. However, unwinding by purified factors was not linked to this conversion, the deamination of AMP residues. Concluding, unwinding of RNA during initiation of protein synthesis does not lead to conversion of adenosine into inosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号