共查询到20条相似文献,搜索用时 9 毫秒
1.
Subcellular distribution of protein kinase C/phorbol ester receptors in differentiating mouse keratinocytes 总被引:4,自引:0,他引:4
The activation of protein kinase C (PKC) by diacylglycerol or tumor promoters plays a pivotal role in signal transduction and subsequent activation of cellular processes. Since the activity of this enzyme is dependent on its immediate lipid domain, its relative distribution within the cell may be an important regulatory mechanism. We report here a relative decrease in PKC/phorbol ester receptor associated with the particulate fraction of mouse keratinocytes induced to differentiate by two separate systems. First, proliferating keratinocytes maintained in low Ca2+ (0.09 mM) serum-free medium were induced to differentiate rapidly by the addition of Ca2+ (1.8 mM). A 1.4-fold decrease in the percent of total phorbol receptor binding activity present in the particulate fraction and concomitant increase in binding in the cytosol fraction was evident 20 min after the Ca2+ addition. Second, in keratinocytes that differentiate over a 6 day cultivation period in serum-containing medium with Ca2+ concentration of 1.8 mM, a significant decrease in the percent of the phorbol receptor binding activity present in the particulate fraction was observed as the culture begins to differentiate on days 3 and 4. Maximal phorbol ester binding in the particulate fraction corresponded to the proliferative phase of the culture (day 2), while lower levels of PKC/phorbol ester binding to particulate fractions were noted during the early differentiative phase (days 3 and 4). Addition of the synthetic diacylglycerols 1-oleoyl-2-acetylglycerol or L-alpha-1,2 dioctanyl glycerol at 30 micrograms/ml to proliferating keratinocyte cultures induced a modest increase in two markers of terminal differentiation: cornified envelope formation and transglutaminase levels. These findings, taken together, support the hypothesis that PKC activation plays a role in the initial signalling events for keratinocyte differentiation. 相似文献
2.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was observed to influence the relative rates of synthesis and degradation of several polypeptides in cultured chick embryo myotubes. The direction of influence partially correlated with whether the polypeptide was uniquely expressed in myotubes or also expressed in its proliferating precursors. The synthesis of all but one of the eight myotube-unique polypeptides examined was inhibited and the degradation of all but two was stimulated. The exceptions were intermediate filament subunits. In contrast, the metabolism of several non-myotube-unique polypeptides was either unaffected or influenced in the opposite direction. A method involving saturation of the intracellular leucine precursor pool with extracellular radioactive leucine suggested that the absolute rate of protein synthesis was only minimally, if at all, affected by the promoter. The effects on protein synthesis were at least partially reversible following removal of the promoter. The changes in synthesis and degradation did not reflect normal maturational changes in cultured myotubes and thus they appeared to be induced by TPA. The data suggest that under some circumstances the rates of synthesis and degradation of several proteins are inversely coupled in the myotube. They also provide a partial explanation for earlier ultrastructural observations that TPA caused a loss of myofilaments and an accumulation of intermediate filaments. Since myotubes occupy the G1 (or G0) stage of the cell cycle, and the DNA content of the cultures was not affected by TPA, TPA's effects were not mediated through cell cycle-dependent mechanisms. 相似文献
3.
A A vonRuecker G Rao F Bidlingmaier 《Biochemical and biophysical research communications》1988,151(3):997-1003
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action. 相似文献
4.
Denning MF 《The international journal of biochemistry & cell biology》2004,36(7):1141-1146
Squamous cells form the outermost layers of the epidermis, and though they are readily discarded from the tissue, they serve a vital water barrier function while in the stratum corneum. The generation of cornified or squamous keratinocytes involves a complex, multi-step differentiation process that insures the proper physical and immunological barrier functions of the epidermis are maintained. The regulation of keratinocyte terminal differentiation is influenced by a large number of signaling pathways. This article will review some recent findings regarding the roles of the protein kinase C (PKC) family in normal keratinocyte differentiation, as well as their involvement in skin diseases, especially skin cancer. 相似文献
5.
T Yamaguchi H Baba M Fukase Y Kinoshita T Fujimi T Fujita 《Biochemical and biophysical research communications》1987,143(2):539-544
The effects of 12-O-tetraadecanoyl phorbol-13-acetate (TPA), 1-oleoyl-2-acetyl-glycerol (OAG), and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on the parathyroid hormone (PTH) degrading activity in a PTH-responsive osteoblast-like rat osteosarcoma cell line UMR106 were investigated to assess the role of Ca2+-activated. Phospholipid dependent protein kinase (protein kinase C) on the degradation of hormones. TPA and OAG, activators of protein kinase C, enhanced the PTH degrading activity dose-dependently, whereas H-7, an inhibitor of protein kinase C, exhibited a dose-dependent inhibition on this activity. These data suggest that protein kinase C activation may enhance PTH degrading activity by UMR106 cells as a possible regulator of PTH degradation. 相似文献
6.
New insights into the regulation of protein kinase C and novel phorbol ester receptors. 总被引:22,自引:0,他引:22
Protein kinase C (PKC), a family of related serine-threonine kinases, is a key player in the cellular responses mediated by the second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. The traditional view of PKCs as DAG/phospholipid-regulated proteins has expanded in the last few years by three seminal discoveries. First, PKC activity and maturation is controlled by autophosphorylation and transphosphorylation mechanisms, which includes phosphorylation of PKC isozymes by phosphoinositide-dependent protein kinases (PDKs) and tyrosine kinases. Second, PKC activity and localization are regulated by direct interaction with different types of interacting proteins. Protein-protein interactions are now recognized as important mechanisms that target individual PKCs to different intracellular compartments and confer selectivity by associating individual isozymes with specific substrates. Last, the discovery of novel phorbol ester receptors lacking kinase activity allows us to speculate that some of the biological responses elicited by phorbol esters or by activation of receptors coupled to elevation in DAG levels could be mediated by PKC-independent pathways. 相似文献
7.
Involvement of protein kinase C in the regulation of ornithine decarboxylase mRNA by phorbol esters in rat hepatoma cells 总被引:2,自引:0,他引:2
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulates a rapid increase in ornithine decarboxylase (EC 4.1.1.17; ODC) activity in target cells. Here we demonstrate that this process involves a rapid accumulation of ODC mRNA, which is maximal 3 h after treatment (three- to eightfold greater than control cells) and decays to control levels within 18 h. Stimulation of ODC mRNA by TPA is blocked by phorbol dibutyrate down-regulation of protein kinase C (PKC). ODC mRNA was also induced by the PKC activators, phospholipase C and 1-oleoyl-2-acetyl-rac-glycerol, and blocked by kinase inhibitors (trifluoroperazine, H7, and palmitoyl-L-carnitine), consistent with a requirement for PKC activation in the induction mechanism. However, the non-PKC-specific protein kinase inhibitor HA1004 also suppressed expression of ODC mRNA in response to TPA, under conditions where it did not inhibit PKC, suggesting that additional kinases may be involved in the intracellular signalling process. The stability of the ODC mRNA (control value = 6.2 +/- 1.6 h) is not significantly changed by either TPA (5.7 +/- 0.8 h) or by cycloheximide (6.0 h). These results are inconsistent with any contribution from altered mRNA half-life towards the accumulation of ODC mRNA following treatment with phorbol ester tumor promoters. 相似文献
8.
Translocation of protein kinase C in rat basophilic leukemic cells induced by phorbol ester or by aggregation of IgE receptors 总被引:7,自引:0,他引:7
Rat basophilic leukemic cells contain protein kinase C (PKC), 96 +/- 1% of which is located in the cytosol in the resting state. Phorbol ester (PMA), synergistically with calcium ionophore (A23187), caused 55% of the total PKC activity to associate rapidly with membranes where it remained for at least 20 min. When IgE-loaded cells were activated by Ag, maximally 30% of the cytosolic activity associated with membranes within 15 to 30 s, but most of this returned to the cytosol by 2 min. The small amount (3%) of PKC activity that remained associated with the membranes did so for at least 20 min but only if aggregation of the receptors was maintained. PKC translocation correlated with aggregation of receptors both at 30 s and at 10 min. However, only the translocation at 10 min and not that at 30 s correlated with receptor-induced exocytosis. In the absence of extracellular calcium (no exocytosis is observed), translocation at 30 s was diminished by 30% and at 10 min was completely absent. Cells depleted of PKC by 18-h treatment with PMA failed to degranulate in response to PMA and A23187 but responded partially (35%) when receptors were aggregated. We conclude that translocation of PKC is an early event that follows aggregation of IgE receptors but may not be essential for mediating the exocytotic mechanism induced by these receptors. 相似文献
9.
The influence of cortisol and other culture conditions on insulin degradation by the chloroquine-sensitive pathway and the chloroquine-nonsensitive pathway (CNP) was investigated in fetal rat hepatocytes during 3 days of culture. The proportions of the chloroquine nonsensitive release of 125I-insulin degradation products into the conditioned medium/h increased from the 1st to the 3rd day of culture, i.e. from 19 to 50% by cells grown in the presence of cortisol and from 17 to 82% by those grown in the absence of cortisol. Replacement of the conditioned medium with the respective fresh medium dramatically enhanced cellular insulin degradation by CNP, i.e. from 22 to 58%, and 19 to 85% in cells grown for 2 days in the presence and absence of cortisol, respectively. Thus, the conditioned medium contained some factor(s) that inhibited CNP. Therefore, we used the inhibited insulin and alpha-casein degradation by papain in vitro as an assay to investigate the nature of the putative anti-(insulin) protease. Cycloheximide completely prevented the appearance of anti-papain activity in the medium. Conditioned medium obtained from cells grown in the presence of cortisol contained about 2-fold more anti-papain activity than the medium that was obtained in the absence of the steroid. The release of anti-papain activity also declined with time from 1 to 3 days of culture and showed an inverse relationship with the magnitude of cellular insulin degradation by CNP. The inhibition of papain-mediated insulin degradation by the anti-(insulin) protease was noncompetitive. The anti-(insulin) protease was nondialyzable (up to the 10-kDa exclusion limit) and inactivated by heat treatment at 50 degrees C for 30 min. These results suggest that fetal hepatocytes synthesize and secrete a glucocorticoid-regulated heat-labile low molecular mass (less than 25 kDa) anti-(insulin) protease, which may contribute to the suppression of insulin degradation caused by the enzymes involved in CNP. 相似文献
10.
Distinct mechanisms of regulation of protein kinase C epsilon by hormones and phorbol diesters 总被引:7,自引:0,他引:7
B Strulovici S Daniel-Issakani G Baxter J Knopf L Sultzman H Cherwinski J Nestor D R Webb J Ransom 《The Journal of biological chemistry》1991,266(1):168-173
In this study, we examined the effects of T cell activators on the regulation of protein kinase C (PKC) isozymes present in thymocytes. Using affinity-purified anti-PKC antisera, we determined that the major PKC isoforms in murine thymocytes are PKC beta and PKC epsilon. The CD4+/CD8+ thymocyte subset expressed high levels of both PKC beta and PKC epsilon, whereas the CD4-/CD8- subset expressed much less of both. PKC beta was down-regulated following treatment of thymocytes with phorbol 12-myristate acetate (PMA) (2 x 10(-8) M) or ionomycin (0.4 microM). In contrast, PMA did not induce the down-regulation of PKC epsilon. Ionomycin alone, however, induced PKC epsilon down-regulation, similar to its effect on PKC beta. Similar observations were made on a promonocytic cell line, U937, which expresses PKC alpha, PKC beta (Strulovici, B., Daniel-Issakani, S., Oto, E., Nestor, J., Jr., Chan, H., and Tsou, A.-P. (1989) Biochemistry 28, 3569-3576), and PKC epsilon. To facilitate the study of PKC beta and PKC epsilon, we established a Chinese hamster ovary cell line which expresses murine PKC epsilon in addition to endogenous PKC alpha and PKC beta. Both PKC isoforms (beta and epsilon) were mostly in particulate form. PMA treatment left the majority of immunoreactive PKC epsilon intact. By contrast, thrombin treatment caused the disappearance of particulate and cytosolic PKC epsilon (60% by 10 min and 80% by 1 h). PMA and thrombin promoted the down-regulation of PKC beta with similar kinetics (100% down-regulation by 3 h). These results indicate that: 1) thymocytes express PKC epsilon; and 2) this isozyme exhibits a novel form of regulation distinct from the other PKC isozymes. 相似文献
11.
Susceptibility of protein kinase C to oxidative inactivation: loss of both phosphotransferase activity and phorbol diester binding 总被引:2,自引:0,他引:2
Exposure of protein kinase C to low concentrations of either N-chlorosuccinimide or H2O2 resulted in rapid and parallel loss of phosphotransferase activity and phorbol ester binding. This oxidative inactivation of protein kinase C also occurred in intact cells exposed to a low concentration of H2O2. With H2O2 treatment the rate of inactivation of protein kinase C in the cytosol of MCF-7 cells was rather slower than that which occurred in the cytosol of PYS cells. However, in both cell types, the oxidative inactivation of membrane-associated protein kinase C occurred rapidly in comparison to the enzyme in the cytosol. Prior treatment of cells with phorbol ester to induce membrane association (stabilization) of protein kinase C, followed by exposure to H2O2, resulted in increased inactivation of protein kinase C, suggesting that membrane association of protein kinase C increases its susceptibility to oxidative inactivation. 相似文献
12.
Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [125I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density. 相似文献
13.
Activation of protein kinase C by a tumor-promoting phorbol ester in pancreatic islets 总被引:2,自引:0,他引:2
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets. 相似文献
14.
Inhibition of human skin fibroblast proliferation by histamine and phorbol esters is mediated by protein kinase C 总被引:1,自引:0,他引:1
The proliferation of human skin fibroblasts in culture was examined using a [3H]thymidine incorporation assay. Histamine inhibited thymidine incorporation with an IC50 of about 0.2 microM. This effect was blocked by the H1 receptor antagonist mepyramine but not by the H2 receptor antagonist cimetidine. Protein kinase C activators, including several phorbol esters and mezerine, also inhibited thymidine incorporation. The IC50 for beta-phorbol 12,13-didecanoate was less than 0.1 nM. The alpha-isomer of this compound was inactive. Long-term treatment of cells with the beta-isomer eliminated the ability of both histamine and phorbol ester to inhibit thymidine incorporation, presumably due to downregulation of protein kinase C. Our results suggest that histamine H1 receptors are linked to activation of protein kinase C and that activation of this enzyme leads to an inhibition of cell proliferation. 相似文献
15.
16.
Proteolytic degradation of protein kinase C in the phorbol ester-induced interleukin-2 secreting thymoma cells 总被引:2,自引:0,他引:2
F L Huang P K Arora E E Hanna K P Huang 《Archives of biochemistry and biophysics》1988,267(2):503-514
Effects of phorbol 12-myristate 13-acetate (PMA) on the fate of protein kinase C in two mouse thymoma cell lines, which are either responsive (EL4) or unresponsive (IEL4) to PMA-induced interleukin-2 (IL-2) production, were investigated with polyclonal antibodies raised against rat brain enzyme. These antibodies immunoprecipitated completely the protein kinase C from both cell lines and detected mainly an 82-kDa protein by immunoblot analysis of the crude homogenates as well as the partially purified kinase preparations. PMA elicited a time- and dose-dependent redistribution of protein kinase C from cytosol to the particulate fraction and proteolytic degradation of the kinase from both cell lines. The dose of PMA required for half-maximum protein kinase C translocation and degradation was at least five times lower for EL4 than for IEL4. In the presence of 16 nM PMA the rates of protein kinase C translocation and degradation were faster in EL4 than in IEL4, and the half-lives of protein kinase C in EL4 and IEL4 were less than 5 min and greater than 2 h, respectively. Analysis of the tryptic fragments of the immunoprecipitated enzyme, previously phosphorylated in the presence of [gamma-32P]ATP, revealed minor structural differences between the protein kinase C from these two cell lines. In neither cell line did the PMA-induced degradation of protein kinase C result in an accumulation of the Ca2+/phospholipid-independent kinase (catalytic unit) as analyzed by immunoblotting and gel filtration chromatography. Thus, activation of protein kinase C through the proteolytic conversion to the effector-independent catalytic unit plays little role in IL-2 production. The role of protein kinase C translocation and degradation in the PMA-induced responses in EL4 cells is unknown. However, IL-2 production in EL4 cells was reduced when PMA-induced degradation of protein kinase C was retarded by exogenously added protease inhibitors. 相似文献
17.
C Borner S N Guadagno D Fabbro I B Weinstein 《The Journal of biological chemistry》1992,267(18):12892-12899
Protein kinase C (PKC), the major receptor for tumor-promoting phorbol esters, consists of a family of at least eight distinct lipid-regulated enzymes. How the various PKC isozymes are regulated in vivo and how they couple to particular cellular responses is largely unknown. We have examined the expression and regulation of PKC isoforms in R6 rat embryo fibroblasts. Northern and Western blot analyses indicate that these cells express four PKC isoforms, cPKC alpha, nPKC epsilon, nPKC delta, and nPKC zeta; of which nPKC epsilon and nPKC delta are the most abundant. In agreement with the simultaneous presence of cPKC and nPKC isozymes, both Ca(2+)-dependent and -independent PKC activities were detected in extracts of these cells. cPKC alpha and nPKC zeta were predominantly localized in the cytosol when subcellular fractionation was carried out in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. When cell lysis was carried out in the presence of Ca2+, greater than 50% of cPKC alpha redistributed to the particulate fraction, whereas nPKC zeta remained in the cytosol. In contrast to cPKC alpha and nPKC zeta, 60-80% of nPKC epsilon and nPKC delta were located in a Ca(2+)-insensitive, membrane-bound form. Treatment of R6 cells with 12-O-tetradecanoyl phorbol 13-acetate (TPA), resulted in the translocation of all four PKC isozymes to the membrane fraction, and the subsequent down-regulation of cPKC alpha, nPKC zeta, and nPKC delta, nPKC epsilon, however, was only partially down-regulated in response to long-term TPA exposure. Overproduction of exogenous cPKC beta I in R6 cells conferred partial resistance of nPKC delta to TPA-induced down-regulation and potentiated the resistance of nPKC epsilon to down-regulation. These results demonstrate that the multiple isoforms of PKC which coexist within a single cell type are differentially regulated by extra- and intracellular stimuli and may thereby influence growth control and transformation via distinct mechanisms. 相似文献
18.
Inhibition of DNA synthesis by phorbol esters through protein kinase C in cultured rabbit aortic smooth muscle cells 总被引:2,自引:0,他引:2
K Kariya Y Fukumoto T Tsuda Y Kawahara H Fukuzaki T Yamamoto Y Takai 《FEBS letters》1987,217(1):69-73
In cultured rabbit aortic smooth muscle cells (SMC), 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in the presence of plasma-derived serum to a small extent, but inhibited markedly the rabbit whole blood serum (WBS)-, platelet-derived growth factor (PDGF)- and epidermal growth factor-induced DNA synthesis. Phorbol-12,13-dibutyrate (PDBu) mimicked this antiproliferative action of TPA, but 4 alpha-phorbol-12,13-didecanoate was inactive in this capacity. Prolonged treatment of the cells with PDBu caused the partial down-regulation of protein kinase C. In these protein kinase C-reduced cells, WBS still induced DNA synthesis, but TPA did not inhibit the WBS-induced DNA synthesis. We have previously shown that protein kinase C is involved at least partially in the PDGF-induced DNA synthesis in rabbit aortic SMC. The present results together with this earlier observation suggest that protein kinase C has not only a proliferative but also an antiproliferative action in rabbit aortic SMC. 相似文献
19.
20.
Two forms of protein kinase C (PKC) activity in cytosol of cultured rat mesangial cells have been characterized in vitro by using histone H1 or endogenous proteins as substrates. Histones H1-phosphorylation was significantly increased only when calcium, phosphatidylserine (PS) and 1,2-diacylglycerol (DAG) or phorbol myristate acetate (PMA) were present together in the incubation medium. EGTA, a calcium chelator, completely inhibited this activity. Upon hydroxyapatite chromatography (HPLC), the PKC activity was eluted as a main peak at 150 mM potassium phosphate with a shoulder at 180 mM. Both peaks corresponded to the type III PKC from rat brain and were identified as PKC alpha isoform by immunoblot analysis. In contrast with what was observed using histone H1, the increased phosphorylation of endogenous proteins in the presence of a mixture of Ca2+/PS, plus either DAG or PMA, was only partly reduced by EGTA. Moreover, the level of the PKC activity detected in the presence of EGTA was comparable to the level of kinase activity, measured in the presence of PS alone or associated with DAG or PMA. This suggests that mesangial cells contain PKC activity which does not absolutely require calcium. Polyacrylamide gel electrophoresis revealed that patterns of phosphorylated mesangial cell proteins are different depending on whether calcium was added or not. In the presence of calcium, PKC strongly phosphorylated the proteins of 53,000 molecular weight, a doublet of 37,000-39,000, the 24,000 and the triplet of 17,000-20,000-22,000 molecular weight. The addition of EGTA to the assays suppressed completely the labelling of most proteins; only the 20,000 molecular weight protein remained strongly labelled, while the 39,000 molecular weight band was only faintly visible. The same patterns of phosphorylations were obtained after omission of calcium in the assays containing only PS and DAG (or PMA). So, the main substrates of calcium-dependent PKC are proteins of 53,000, 39,000, 37,000, 22,000, 24,000 and 17,000 molecular weight while the protein of 20,000 molecular weight appears to be the main substrate of calcium-independent PKC. The existence in mesangial cells of at least two forms of PKC, which phosphorylate specific endogenous proteins, emphasizes the complexity of the phospholipid-dependent regulatory cascade and raises the possibility that actions of different regulators may be transduced through distinct PKC isozymes. 相似文献