首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H K Baek  H E Van Wart 《Biochemistry》1989,28(14):5714-5719
The reaction of horseradish peroxidase (HRP) with H2O2 has been studied in 50% v/v methanol/water over the 25.0 to -36.0 degrees C temperature range by using the low-temperature stopped-flow technique. All reactions were carried out under pseudo-first-order conditions with [H2O2] much greater than [HRP]. Arrhenius plots for the pseudo-first-order rate constant kobs were linear over the 17.6 to -36.0 degrees C temperature range studied with an activation energy of 4.8 +/- 0.5 kcal/mol. Above 0 degrees C, kobs varies linearly with peroxide concentration. However, saturation kinetics are observed below -16.0 degrees C, indicating that there is at least one reversible elementary step in this reaction. Double-reciprocal plots at -26.0 degrees C at pH* 7.3 for the reaction give kappa max(obs) = 163 s-1 and KM = 0.190 mM. Rapid-scan optical studies carried out at -35.0 degrees C with [H2O2] much greater than KM reveal the presence of a transient intermediate referred to as compound 0 whose conversion to compound I is rate limiting. The Soret region of the optical spectrum of compound 0 resembles that of a "hyperporphyrin" with prominent bands near 330 and 410 nm. The temperature dependencies of kappa max(obs) and KM have been measured over the -16.0 to -26.0 degrees C range and give an activation energy for kappa max(obs) of 1.6 +/- 0.7 kcal/mol and an enthalpy of formation for compound 0 of 4.0 +/- 0.7 kcal/mol.  相似文献   

2.
The kinetics of microperoxidase-11 (MP-11) in the oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied, taking into account the inactivation of enzyme during reaction by its suicide substrate, H2O2. Concentrations of substrates were so selected that: 1) the reaction was first-order in relation to benign substrate, AH and 2) high ratio of suicide substrate to the benign substrate, [H2O2] > [AH]. Validation and reliability of the obtained kinetic equations were evaluated in various nonlinear and linear forms. Fitting of experimental data into the obtained integrated equation showed a close match between the kinetic model and the experimental results. Indeed, a similar mechanism to horseradish peroxidase was found for the suicide-peroxide inactivation of MP-11. Kinetic parameters of inactivation including the intact activity of MP-11, alphai, and the apparent inactivation rate constant, ki, were obtained as 0.282 +/- 0.006 min(-1) and 0.497 +/- 0.013(-1) min at [H2O2] = 1.0 mM, 27 degrees C, phosphate buffer 5.0 mM, pH = 7.0. Results showed that inactivation of microperoxidase as a peroxidase model enzyme can occur even at low concentrations of hydrogen peroxide (0.4 mM).  相似文献   

3.
Nalpha-Acetylated microperoxidase-8 (Ac-MP-8) is a water soluble, ferric heme model for peroxidases. We report here that Ac-MP-8 catalyzes catalase-type reaction in addition to peroxidase-type and cytochrome P450-type reactions. The catalase activity of Ac-MP-8 was determined by the Clark oxygen electrode, which measures the production of oxygen in solution. The Km and kcat of the decomposition of hydrogen peroxide (H2O2) catalyzed by Ac-MP-8 are 40.9 mm and 4.1 per s, respectively. The specificity constant (kcat/Km) of Ac-MP-8 in catalase-type reaction of H2O2 is 100.2,/m/s, which is 5- to 12- and 50- to 100-fold less than those of MPs in cytochrome P450-type reaction of aniline/H2O2 and peroxidase-type reaction of o-methoxyphenol/H2O2, respectively. These results indicate that Ac-MP-8 can catalyze three different types of reactions, and the relative catalytic specificities of Ac-MP-8 with a histidyl ligand exhibit the following orders: peroxidase-type > cytochrome P450-type > catalase-type reactions. Comparisons of the enzyme activities of Ac-MP-8 suggest that the fifth ligands of hemoproteins influence the ratio of the three types of reactions.  相似文献   

4.
K. Ryu  Y. Kim 《Biotechnology letters》1997,19(10):1019-1022
A thermostable alkaline peroxidase was partially purified from rice hulls by precipitation in 70% (v/v) isopropanol, anion exchange chromatography on a DEAE cellulose column (eluted by 50 mM potassium phosphate, pH 6.0), and gel filtration on a Sephacryl S-200 column. The peroxidase (RHP) showed a maximum activity at a slightly alkaline condition, between pH 7 and 8, for the oxidation of guaiacol in the presence of 0.2 mM H O . The half life time for the inactivation of RHP at 68°C was 168 min nearly six times that of horseradish peroxidase (HRP) at the same temperature. Dioxane enhanced the activity of RHP but decreased that of HRP.  相似文献   

5.
Complex [Cu(dpq)(2)(H(2)O)](ClO(4))(2).H(2)O (1), where dpq is dipyrido-[3,2-D:2',3'-f]-quinoxaline, has been prepared by reacting copper(II) perchlorate hexahydrate with dpq in methanol and structurally characterized. The complex crystallizes in the triclinic space group P-1 with the unit cell parameters a=8.646(2) A, b=12.290(5) A, c=14.283(4) A, alpha=94.01(2) degrees, beta=91.69(2) degrees,gamma=101.60 (3) degrees, V=1481.7(8) A(3) and Z=2. The structure, refined to R=0.0505 and R(w)=0.1441 for 5212 reflections with I>2sigma (I) using 440 parameters, shows the presence of a CuN(4)O chromophore in an axially compressed distorted trigonal-bipyramidal structure. The Cu-N distances lie in the range 1.969(3)-2.103(3) A. The Cu-OH(2) distance is 2.145(3) A. The complex is one-electron paramagnetic and exhibits a visible spectral d-d band at 718 nm in MeCN. It shows a quasi-reversible cyclic voltammetric response at 0.091 V (DeltaE(p)=229 mV) at 50 mV s(-1) in MeCN-0.1 M TBAP for the Cu(II)/Cu(I) couple. In 50 mM Tris-HCl/0.1 M KCl buffer-DMF mixture (1:4 v/v, pH 7.2), the couple appears at 0.089 V versus SCE. The complex undergoes facile reduction with sodium ascorbate in an aqueous DMF mixture (4:1 v/v) to form an unstable brown Cu(I) species (lambda(max)=440 nm, epsilon=7480 M(-1) cm(-1)) which converts to 1 on exposure to air giving a turnover frequency of ca. 400. Binding studies revealed that 1 is an efficient binder to calf thymus DNA. Complex 1 on reaction with supercoiled (SC) DNA in presence of ascorbic acid in a 50 mM Tris-HCl/50 mM NaCl buffer (pH 7.2) shows nuclease activity which is 4.5 times greater than that of the phen analogue.  相似文献   

6.
The association process of FAD and apo-electron-transferring flavoprotein (apoETF) from hog kidney was investigated. The reaction schemes which involve the association-dissociation of the protein species could be excluded by the light scattering data, which indicated that the molecular weights of apoETF and holoETF are identical. The binding reaction between FAD and a large excess of apoETF was monophasic and obeyed pseudo-first order kinetics. On the other hand, the reaction between apoETF and a large excess of FAD was biphasic: the fast phase obeyed a pseudo-first order reaction, and the rate of the slow phase was almost independent of FAD concentration. These results suggest the existence of two different forms of apoETF, as represented in the following reaction scheme: [formula: see text] where "F" is FAD, "H" is holoETF, and "A" and "A" are the different forms of apoETF. The kinetic parameters were determined as k-1 = 3.9 x 10(4) M-1.s-1, k-1 approximately 10(-5) s-1, k+2 = 1.0 x 10(-3) s-1, and k-2 = 3.1 x 10(-3) s-1, in 50 mM potassium phosphate buffer, pH 7.6, containing 0.3 mM EDTA, and 5% v/v glycerol, at 7 degrees C. The elution patterns of apoETF on molecular sieve chromatography were very different from that of holoETF although the true molecular weights were identical. This result suggests that the structure of apoETF differs greatly from that of holoETF.  相似文献   

7.
Catalytic oxidation of p-cresol by ascorbate peroxidase   总被引:2,自引:0,他引:2  
Transient and steady state kinetics, together with a range of chromatographic and spectroscopic techniques, have been used to establish the mechanism and the products of the H(2)O(2)-dependent oxidation of p-cresol by ascorbate peroxidase (APX). HPLC, GC-MS, and NMR analyses are consistent with the formation of 2, 2'-dihydroxy-5,5'-dimethylbiphenyl (II) and 4alpha,9beta-dihydro-8, 9beta-dimethyl-3(4H)-dibenzofuranone (Pummerer's ketone, III) as the major products of the reaction. In the presence of cumene hydroperoxide, two additional products were observed which, from GC and MS analyses, were shown to be 1,1-dimethylbenzylalcohol (IV) and bis-(1-methyl-1-phenyl-ethyl)-peroxide (V). The product ratio II:III was dependent on enzyme concentration: at low concentrations Pummerer's ketone (III) predominates and at high concentrations formation of the biphenyl compound (II) is favored. Steady-state data showed a sigmoidal dependence on [p-cresol] that was consistent with the presence of 2.01 +/- 0.15 binding sites for the substrate (25.0 degrees C, sodium phosphate, pH 7.0, mu = 2.2 mM) and independent of ionic strength in the range 2.2-500 mM. Single turnover kinetic experiments (pH 7.0, 5.0 degrees C, mu = 0.10 M) yielded second-order rate constants for Compound I reduction by p-cresol, k(2), of 5.42 +/- 0.10 x 10(5) M(-1) s(-1), respectively. Rate-limiting reduction of Compound II by p-cresol, k(3), showed saturation kinetics, giving values for K(d) = 1.54 +/- 0.12 x 10(-3) M and k(3) = 18.5 +/- 0.7 s(-1). The results are discussed in the more general context of APX-catalyzed aromatic oxidations.  相似文献   

8.
Rat liver microsomes show a capacity to synthesize [1-3H]dolichyl phosphate from [1-3H]-dolichol. Formation of [1-3H]dolichyl phosphate increased continuously over 15 min although the reaction rate was never completely linear. Product formation was directly proportional to microsomal protein concentration between 1.1 mg/mL and the highest concentration tested, 5.5 mg/mL. The reaction rate was linear with respect to the dolichol content of the assay mixture to a saturation point (120 microM). An apparent Km of 50 microM was established for dolichol. The normal phosphate donor for the reaction is CTP and not ATP. The optimum concentration of CTP was 10 mM, and an apparent Km of 4 mM was calculated for this nucleoside triphosphate. The reaction was totally dependent on divalent metal ion, magnesium being more effective than calcium. The optimum concentration of magnesium ion and CTP were the same (10 mM), suggesting that MgCTP2- is utilized as the normal enzyme substrate. Activity measured in the absence of Triton X-100 was only 5% of the activity observed at the optimum (0.5% w/v) detergent concentration. The measurable levels of dolichol phosphokinase could be doubled by the inclusion of 10-15 mM NaF as phosphatase inhibitor. Optimal enzymatic activity was obtained between pH 7.0 and pH 7.5 and could be inhibited by EDTA. The sulfhydryl reagent DTT was slightly stimulatory while the product of the reaction, dolichyl phosphate, was noninhibitory at the highest concentration tested (13.8 microM). The second reaction product (CDP) inhibits the enzymatic phosphorylation of dolichol.  相似文献   

9.
Aldolase and triose phosphate isomerase both display strict specificity towards the enantiomers of [1-3H]glycerone 3-phosphate. The enantiomer generated from D-[1-3H]glyceraldehyde 3-phosphate produces 3HOH in the aldolase reaction, whilst the other enantiomer generated from D-[3-3H]fructose 1,6-bisphosphate is solely detritiated in the reaction catalyzed by triose phosphate isomerase. Advantage was taken of such a specificity to assess, in human erythrocytes exposed to either D-[3-3H]glucose or D-[3,4-3H]glucose, the extent of D-glyceraldehyde 3-phosphate sequential conversion to glycerone 3-phosphate and D-fructose 1,6-bisphosphate, relative to net glycolytic flux. At 37 degrees C and in the presence of 5.6 mM D-glucose, only 55% of the metabolites of D-[4-3H]glucose underwent detritiation in the reactions catalyzed by triose phosphate isomerase and aldolase. Such a percentage was further decreased at low temperature (8 degrees C) or lower concentrations of D-glucose (0.2 and 1.0 mM). However, when the erythrocytes were exposed to menadione, the increase in 3HOH production from either D-[3-3H]glucose or D-[3,4-3H]glucose indicated that the majority of the 3H atoms initially located on the C4 of D-glucose were recovered as 3HOH upon circulation through the pentose phosphate pathway. These findings suggest that, under physiological conditions, a large fraction of D-glyceraldehyde 3-phosphate generated from exogenous D-glucose may undergo enzyme-to-enzyme channelling in the glycolytic pathway.  相似文献   

10.
Adenosine 3',5'-cyclic phosphate (cAMP) is efficiently hydrolyzed at pH 7, 50 degrees C by use of [Co-(trien) (H2O)2]3+ and [Co(tme)2-(H2O)2]3+ complexes as catalysts: trien (diethylenetriamine) and tme (1,1,2,2-tetramethylethylenediamine). The acceleration is remarkable (10(8) to 10(9) fold), decreasing half-life of cAMP from 660,000 years to 7-15 hours.  相似文献   

11.
Several buffer compositions with a wide range of pH values have been reported for radiometric assay of tyrosine hydroxylase (TH) in biological samples. Assay sensitivity becomes a prime concern while analyzing TH in minute samples like tissue biopsies or discrete regions of rodent brain wherein lower enzyme levels are anticipated due to smaller sample sizes. It was therefore rationalized to evaluate relative affinities of three commonly used assay buffers (sodium phosphate, sodium acetate, and Tris-acetate) with TH enzyme activity. The impact of buffer pH and cofactor concentration on the sensitivity of TH assay was also investigated. Striata from rats or mice were homogenized, respectively, with 1.0 or 0.5 ml of the assay buffer containing 0.5% Triton X-100. The supernatants (200 microl) were incubated (20 min, 37 degrees C) with 0.8 microCi [3H] L-tyrosine, 1.5 mM DL-6-methyl-5,6,7,8-tetrahydropterine (6-MPH4), 100 U catalase, and 1.0 microM dithiothreitol in a total volume of 300 microl. The reaction was terminated by 1-ml suspension of activated charcoal in 0.1 M HCl. After centrifugation, 200-microl aliquots were mixed with 5 ml of cocktail for quantitation of [3H] H2O in supernatant. The results showed significant impact of pH rather than the buffer composition on the sensitivity of TH assay. An optimal pH range was found to be 5.5-6.0, whereas TH activity was significantly inhibited at pH 5.0 and pH 6.8 (F = 55.09, P = 0.000). A significantly high TH activity was observed with 1.5 mM 6-MPH4, whereas higher concentrations (3.0-4.5 mM) inhibited TH activity (F = 7.47, P = 0.005). Analysis of serially diluted striatal homogenates showed a significant correlation between TH activity and sample amount. The assay reaction was linear for 20- and 30-min incubation for rat and mice striata, respectively.  相似文献   

12.
The novel deoxyribonucleotide alpha-[d(CpCpTpTpCpC)] and its complement beta-[d(GpGpApApGpG)] were synthesized by the phosphotriester method. 1H-NMR-NOE examination of the alpha-hexamer revealed that the cytosine and thymine bases appear to adopt anti conformations in this strand. In addition the deoxyribose of the thymidine moieties may adopt average conformations approximating to C3'-endo while the cytidine furanose groups are close to C2'-endo conformations. Both hyperchromicity in thermal melting and detection of base paired imino protons in 1H-NMR studies in H2O provide evidence for the annealing of alpha-d[CCTTCC] with its complement beta-d[GGAAGG] in potassium phosphate buffer pH 7.1 containing 10 mM magnesium chloride. Under these conditions thermal melting begins at 38 degrees C and its complete at approximately 45 degrees C. NOE experiments do not permit a decision on the polarity of annealing (predicted to be parallel) for this particular pair of sequences.  相似文献   

13.
The mechanism of accumulation of radioactive label from fNle-Leu-[3H]Phe by guinea pig alveolar macrophages was investigated. The binding of fNle-Leu-[3H]Phe to macrophages reached equilibrium within 5 min at 4 degrees C, but equilibrium could not be achieved at temperatures where fNle-Leu-Phe stimulated superoxide anion production is observed (e.g., 21-23 degrees C). At this temperature a rapid phase of initial binding of fNle-Leu-[3H]Phe to its receptor was followed by continued accumulation of cell-associated radioactivity which was linear and was dependent on the extracellular pH, i.e., the rate increased as the pH was lowered from pH 8 to pH 6. Examination for possible intracellular hydrolysis of fNle-Leu-[3H]Phe revealed the presence of extensive amounts of [3H]phenylalanine, both cell-associated and in the medium. The increases in cell-associated [3H]phenylalanine correlated in time and pH with cell-associated radioactivity that was accumulated after stimulation with fNle-Leu-[3H]Phe. The addition of 1 mM unlabelled phenylalanine blocked the long term accumulation of label from fNle-Leu-[3H]Phe by macrophages. 1 mM phenylalanine had no measureable effect on fNle-Leu-Phe stimulated O2- production, fNle-Leu-[3H]Phe hydrolysis or on fNle-Leu-[3H]Phe binding to its receptor. These results indicated that the long term accumulation of radioactivity by alveolar macrophages was due to extracellular hydrolysis of fNle-Leu-[3H]Phe followed by transport of liberated [3H]phenylalanine into the cells. A high affinity (Km = 3.56 X 10(-8) M) transport system for phenylalanine was measured in alveolar macrophages, which was not stimulated by the addition of fNle-Leu-Phe. The extracellular hydrolysis of fNle-Leu-[3H]Phe could not be attributed to release of macrophage enzymes into the medium. The responsible proteinase appears to be membrane bound and has a Km for the hydrolysis of fNle-Leu-[3H]Phe of 2.6 X 10(-7) M which is similar to the Kd (1.5 X 10(-7) M) for fNle-Leu-Phe binding. Taken together, these data suggest that for the alveolar macrophage: (1) formyl peptides are not internalized by a receptor-mediated process; (2) a surface proteinase can catalyze the hydrolysis of formyl peptides; and (3) [3H]phenylalanine formed by fNle-Leu-[3H]Phe hydrolysis is transported into the interior of the macrophage.  相似文献   

14.
Conditions have been developed for an L-[3H]glutamate binding assay in which 85-95% of the specific binding is to a site that corresponds to the N-methyl-D-aspartate subclass of acidic amino acid receptors. Incubation of synaptic plasma membranes with L-[3H]glutamate in 50 mM Tris/acetate, pH 7.4, for 2-20 min at 2 degrees C results in binding with pharmacological characteristics of the electrophysiologically defined N-methyl-D-aspartate receptor. The fraction of glutamate binding to this subclass of receptors, relative to the total, decreases with both increased time and temperature. This binding is reversible, is concentrated in the synaptic plasma membrane fraction, has a pH optimum of 7.0-7.4, and is linear with respect to tissue protein concentration. The binding is unaffected by 1 mM concentrations of the anions sulfate, chloride, bromide, thiocyanate, phosphate, acetate, nitrate, or carbonate and the monovalent cations potassium or ammonium. However sodium and the divalent cations copper, cobalt, zinc, cadmium, and manganese decrease binding to this N-methyl-D-aspartate site.  相似文献   

15.
Role of mono- and divalent metal cations in the catalysis by yeast aldolase   总被引:1,自引:0,他引:1  
The rate of deuterium exchange between [1-(S)-2H]dihydroxyacetone 3-phosphate and the solvent catalyzed by native and metal-substituted yeast aldolases has been measured. In the presence of 0.1 M potassium acetate at 15 degrees C, pH 7.3, the deuterium exchange reaction catalyzed by native yeast aldolase has a kcat of 95 s-1. In contrast to the 7-fold activity enhancement by 0.1 M potassium ion (relative to 0.1 M sodium ion) of the cleavage of D-fructose 1,6-bisphosphate catalyzed by native yeast aldolase, a negligible (1.1-fold) activation by 0.1 M potassium ion is observed in the rate of dedeuteration of [1(S)-2H]dihydroxyacetone 3-phosphate. The order of reactivity of the yeast metalloaldolases in the deuterium exchange roughly parallels that seen in the fructose bisphosphate cleavage reaction. These findings suggest that the carbonyl groups of enzyme-bound D-fructose 1,6-bisphosphate and dihydroxyacetone phosphate are both polarized by the active site divalent metal cation. A mechanistic formulation consistent with the results of this and the previous paper is presented.  相似文献   

16.
A spectrophotometric study of the reduction of the Fe3+ microperoxidase-8-aniline (Fe3+-MP-8-An) complex has been carried out. Addition of NADH to a solution of Fe3+-MP-8-An under strictly anerobic conditions results in the formation of a species with lambda max = 414 nm (Fe3+-MP-8-An lambda max 407 nm). The kinetics of formation of this species show an induction period (tau) which follows saturation kinetics with respect to [aniline] with Km(app) = 2.2 x 10(-3) mol dm-3, i.e., close to that obtained in the preceding paper from O2 consumption kinetics mediated by MP-8. Addition of an anerobic solution of the NADH reduced MP-8-An complex, to a saturated O2 solution at pH 12 in the presence of 0.5 mM NADH and aniline 10 mM results in the virtual elimination of the induction phase, which has previously characterized O2 consumption kinetics in ferriprotoporphyrin IX oxygen activation systems. The Arrhenius activation energy for the reduction of the Fe3+-MP-8-An complex is close to that observed for the first reductive step in the cyt P-450 O2 activation cycle. Anerobic reduction of Fe3+-MP-8 by sodium dithionite in 20% MeOH/Aq at pH 8 followed by anerobic titration of the Fe2+-MP-8 (lambda max 420.5 nm) with aniline at pH 12 gives rise to a species lambda max 415 with KD for the process = 4.4 x 10(-3) mol dm-3 (+/- 1.2 x 10(-3) mol dm-3).  相似文献   

17.
The oxidation of NAD(P)H by pyrroloquinoline quinone (PQQ) was non-enzymatically carried out at physiological pH in the presence of O2. The PQQ-NAD(P)H system requires about 1 mol of O2 for the oxidation of 1 mol of NAD(P)H. The oxidation of NAD(P)H occurred at a pseudo-first-order rate with respect to NAD(P)H and was of zero order with respect to PQQ concentration in in the presence of O2: k0[PQQ] [NAD(P)H] = k1 [NAD(P)H], where k0[PQQ] = k1, in which [PQQ] represents the initial concentration of PQQ. k0 values for NADH and NADPH were 3.4.10(2) M-1.min-1 and 2.0.10(2) M-1.min-1, respectively, at 25 degrees C and at 258 microM O2 (initial concentration). The system produced O-2, probably by the interaction of PQQ.H and/or NAD(P).with O2, during the oxidation of NAD(P)H. PQQH2 and PQQ.H were easily oxidized to PQQ in the presence of O2, yielding H2O2.  相似文献   

18.
The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.  相似文献   

19.
Incubation of aqueous solutions of 2-nitropropane in air causes a slow oxidation reaction that generates H(2)O(2). Purified horseradish peroxidase catalyses the oxidation of such preincubated 2-nitropropane solutions according to the equation: [Formula: see text] The pH optimum is 4.5 and K(m) for 2-nitropropane is 16mm. Other nitroalkanes or nitro-aromatics tested are not oxidized at significant rates by peroxidase. H(2)O(2) or 2,4-dichlorophenol increases the rate of 2-nitropropane oxidation by peroxidase. Catalase inhibits the reaction completely. Superoxide dismutase or mannitol, a scavenger of the hydroxyl radical, OH(.), each inhibits partially. Aniline and guaiacol are also powerful inhibitors of 2-nitropropane oxidation. It is suggested that peroxidase uses the traces of H(2)O(2) generated during preincubation of 2-nitropropane to catalyse oxidation of this substrate into a radical species that can reduce O(2) to the superoxide ion, O(2) (-.).O(2) (-.), or OH(.) derived from it, then appears to react with more nitropropane, generating further radicals and H(2)O(2) to continue the oxidation. Inhibition by aniline and guaiacol seems to be due to a competition for H(2)O(2).  相似文献   

20.
1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号