首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Chlorosomes, the antenna complexes of green bacteria, are unique antenna systems in which pigments are organized in aggregates. Studies on isolated chlorosomes from Chlorobaculum tepidum based on SDS-PAGE, immunoblotting and molecular biology have revealed that they contain ten chlorosomal proteins, but no comprehensive information is available about the protein composition of the entire organelle. To extend these studies, chlorosomes were isolated from C. tepidum using three related and one independent isolation protocol and characterized by absorption spectroscopy, tricine SDS-PAGE, dynamic light scattering (DLS) and electron microscopy. Tricine SDS-PAGE showed the presence of more than 20 proteins with molecular weights ranging between 6 and 70 kDa. The chlorosomes varied in size. Their hydrodynamic radius (R(h) ) ranged from 51 to 75 nm and electron microscopy indicated that they were on average 140 nm wide and 170 nm long. Furthermore, the mass of 184 whole chlorosome organelles determined by scanning transmission electron microscopy ranged from 27 to 237 MDa being on average 88 (±28) MDa. In contrast their mass-per-area was independent of their size, indicating that there is a strict limit to chlorosome thickness. The average protein composition of the C. tepidum chlorosome organelles was obtained by MS/MS-driven proteomics and for the first time a detailed protein catalogue of the isolated chlorosomal proteome is presented. Based on the proteomics results for chlorosomes isolated by different protocols, four proteins that are involved in the electron or ion transport are proposed to be tightly associated with or incorporated into C. tepidum chlorosomes as well as the ten Csm proteins known to date.  相似文献   

2.
Based on current treatment of Alzheimer's disease, where the carbamate inhibitor Rivastigmine is used, two series of carbamate derivatives were prepared: (i) N-phenylcarbamates with additional carbamate group (112) and (ii) N-phenylcarbamates with monosaccharide moiety (1324). All compounds were tested for the inhibitory effect on both of the cholinesterases, electric eel acetylcholinesterase (eeAChE) and butyrylcholinesterase from equine serum (eqBChE) and the inhibitory activity (expressed as IC50 values) was compared with that of the established drugs Galanthamine and Rivastigmine. The compounds with two carbamate groups 112 revealed higher inhibitory efficiency on both cholinesterases in compared with monosaccharide derived carbamates 1324 and with Rivastigmine. The significant decrease of inhibitory efficiency on eqBChE (also for eeAChE but in less manner) was observed after deacetalization of monosaccharide. Moreover, the type of inhibitory mechanism of five chosen compounds was studied. It was found, that compounds with two carbamate groups act presumably via a mixed inhibitory mechanism and the compounds with monosaccharide moiety act as non-competitive inhibitors. The lipophilicity of tested compounds was determined using partition coefficient. Specific positions of the inhibitors in the binding sites of cholinesterases were determined using molecular modeling and the results indicate the importance of phenylcarbamate orientation in the catalytic gorges of both enzymes.  相似文献   

3.
The increasing resistance of pathogens to common antibiotics, as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications, has stimulated the development of novel classes of molecules that target urease as an enzyme. In this context, the newly developed compounds on the basis of 1-heptanoyl-3-arylthiourea family were evaluated for Jack bean urease enzyme inhibition activity to validate their role as potent inhibitors of this enzyme. 1-Heptanoyl-3-arylthioureas were obtained in excellent yield and characterized through spectral and elemental analysis. All the compounds displayed remarkable potency against urease inhibition as compared to thiourea standard. It was found that novel compounds fulfill the criteria of drug-likeness by obeying Lipinski’s rule of five. Particularly compound 4a and 4c can serve as lead molecules in 4D (drug designing discovery and development). Kinetic mechanism and molecular docking studies also carried out to delineate the mode of inhibition and binding affinity of the molecules.  相似文献   

4.
Abstract

Here, we report on the effect of aspirin (ASA), on the binding parameters with regard to bilirubin (BR) to human serum albumin (HSA). Two different classes of binding sites were detected. Binding to the first and second classes of the binding sites was dominated by hydrophobic forces in the case of HSA-BR, whereas in the case of the ternary system, binding to the first and second classes of the binding sites was achieved by electrostatic interaction. The binding constant (Ka) and number of binding site (n) obtained were 1.6 × 106 M?1 and 0.98, respectively, for the primary binding site in the case of HSA-BR, and 3.7 × 106 M?1 and 0.84, respectively, in the presence of ASA (ternary complex) at δex = 280 nm. The progressive quenching of the protein fluorescence as the BR concentration increased indicated an arrangement of the domain IIA in HSA. Changes in the environment of the aromatic residues were also observed by synchronous fluorescence spectroscopy (SFS). Changes of the secondary structure of HSA involving a decrease of α-helical and β-sheet contents and increased amounts of turns and unordered conformations were mainly found at high concentrations of BR. For the first time, the relationship between the structural parameters of HSA-BR by RLS for determining the critical induced aggregation concentration (CCIAC) of BR in the absence and presence of ASA was investigated, and there was a more significant enhancement in the case of the ternary mixture as opposed to the binary one. Changes in the zeta potential of HSA and the HSA-ASA complex in the presence of BR demonstrated a hydrophobic adsorption of this anionic ligand onto the surface of HSA in the binary system as well as both electrostatic and hydrophobic adsorption in the case of the ternary complex. By performing docking experiments, it was found that the acting forces between BR and HSA were mainly hydrophobic > hydrogen bonding > electrostatic interactions, and consequently BR had a long storage time in blood plasma, especially in the presence of ASA. This was due to the electrostatic interaction force between the BR and HSA being stronger in (HSA-ASA) BR than in the HSA-BR complex. In addition, it was demonstrated that, in the presence of ASA, the first binding site of BR on HSA was altered, but the parameters of binding did not become significantly modified, and thus the affinity of BR barely changed with and without ASA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号