首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rational design based on a pharmacophore of CCR2 antagonists reported in the literature identified lead compound 9a with potent inhibitory activity against human CCR2 (hCCR2) but moderate activity against murine CCR2 (mCCR2). Modification on 9a led to the discovery of a potent CCR2 antagonist 21 (INCB3344) with IC(50) values of 5.1 nM (hCCR2) and 9.5 nM (mCCR2) in binding antagonism and 3.8 nM (hCCR2) and 7.8 nM (mCCR2) in antagonism of chemotaxis activity. INCB3344 exhibited >100-fold selectivity over other homologous chemokine receptors, a free fraction of 24% in human serum and 15% in mouse serum, and an oral bioavailability of 47% in mice, suitable as a tool compound for target validation in rodent models.  相似文献   

2.
A novel series of cyclic urea-based CCR5 antagonists was designed aiming to resolve instability issue in the fasted simulated intestinal fluid (FSIF) associated with the acyclic urea moiety in 1. This class of CCR5 compounds demonstrated high antiviral activities against HIV-1 infection in both HOS and PBL assays. Further evaluation of these compounds indicated that 16-R not only substantially enhanced its stability, but also exhibited excellent pharmacokinetics properties.  相似文献   

3.
We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.  相似文献   

4.
A novel series of pyridyl carboxamide-based CCR5 inhibitors was designed, synthesized, and demonstrated to be highly potent against HIV-1 infection in both HOS and PBL assays. Attempts to evaluate this series of compounds in a rat PK model revealed its instability in rat plasma. A hypothesis for this liability was proposed, and strategies to overcome this issue were pursued, leading to discovery of highly potent 40 and 41, which featured dramatically improved rat PK profiles.  相似文献   

5.
Replacement of the cyclic carbamate in our previously disclosed 1-oxa-3,9-diazaspiro[5.5]undecan-2-one template led to the discovery of two novel series of 3,9-diazaspiro[5.5]undecane and undeca-2-one CCR5 antagonists. The synthesis, SAR, and antiviral activities of these two series are described. One compound (32) was found to have attractive combination of antiviral potency, selectivity, and pharmacokinetic profile. The asymmetric synthesis of 32 was also accomplished and both enantiomers were equally potent.  相似文献   

6.
A series of compounds which exhibited good human CCR1 binding and functional potency was modified resulting in the discovery of a novel series of high affinity, functionally potent antagonists of the CCR1 receptor. Issues of PXR activity, ion-channel potency, and poor metabolic stability were addressed by the addition of a hydroxyl group to an otherwise lipophilic area in the molecule resulting in the discovery of preclinical candidate BMS-457 for the treatment of rheumatoid arthritis.  相似文献   

7.
A series of N-(pyrimidin-4-yl)-phenylalanine VLA-4 antagonists is described. Optimization of substituents at the 2 and 5 positions of the pyrimidine ring gave 14, a very potent VLA-4 inhibitor which is orally active in a sheep asthma model.  相似文献   

8.
Following the discovery that hydroxylated derivative 3 (Fig. 1) was one of the oxidative metabolites of the original lead 1, it was found that hydroxylated compound 4 possesses higher in vitro anti-HIV potency than the corresponding non-hydroxylated compound 2. Structural hybridation of 4 with the orally available analog 5 resulted in another orally-available spirodiketopiperazine CCR5 antagonist 6a that possesses more favorable pharmaceutical profile for use as a drug candidate.  相似文献   

9.
Leucine-rich repeat kinase 2 (LRRK2) has been suggested as a potential therapeutic target for Parkinson’s disease. Herein we report the discovery of 5-substituent-N-arylbenzamide derivatives as novel LRRK2 inhibitors. Extensive SAR study led to the discovery of compounds 8e, which demonstrated potent LRRK2 inhibition activity, high selectivity across the kinome, good brain exposure, and high oral bioavailability.  相似文献   

10.
The chemokine receptor 2 (CCR2) directs migration of monocytes and has been proposed to be a drug target for chronic inflammatory diseases. INCB3344 was first published as a small molecule nanomolar inhibitor of rodent CCR2. Here, we show that INCB3344 can also bind human CCR2 (hCCR2) with high affinity, having a dissociation constant (Kd) of approximately 5 nM. The binding of the compound to the receptor is rapid and reversible. INCB3344 potently inhibits hCCR2 binding of monocyte chemoattractant protein-1 (MCP-1) and MCP-1-induced signaling and function in hCCR2-expressing cells, including ERK phosphorylation and chemotaxis, and is competitive against MCP-1 in vitro. INCB3344 also blocks MCP-1 binding to monocytes in human whole blood, with potency consistent with in vitro studies. The whole blood binding assay described here can be used for monitoring pharmacodynamic activity of CCR2 antagonists in both preclinical models and in the clinic.  相似文献   

11.
A novel N-(2-oxo-2-(piperidin-4-ylamino)ethyl)-3-(trifluoromethyl)benzamide series of human CCR2 chemokine receptor antagonists was identified. With a pharmacophore model based on known CCR2 antagonists a new core scaffold was designed, analogues of it synthesized and structure–affinity relationship studies derived yielding a new high affinity CCR2 antagonist N-(2-((1-(4-(3-methoxyphenyl)cyclohexyl)piperidin-4-yl)amino)-2-oxoethyl)-3-(trifluoromethyl)benzamide.  相似文献   

12.
Prostate cancer is a leading cause of death among males in the United States. As the chemokine receptor CCR5 is over-expressed in more aggressive forms of prostate cancer, and is also a critical receptor in inflammation, chemokine receptor CCR5 antagonists could potentially act as anti-prostate cancer agents. Anibamine, a natural product CCR5 antagonist, provides a unique molecular scaffold for the generation of novel analogs with possible anti-prostate cancer activity. A series of analogs of anibamine were designed, synthesized and tested against several prostate cancer cell lines. The analogs all acted as CCR5 antagonists at micromolar range affinity to the receptor while their anti-proliferative activity varied depending on the cell line type and their chemical structural properties. Further basal cytotoxicity characterization on these compounds indicated some of them may be suitable for in vivo studies.  相似文献   

13.
A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C–C bond between the pyrrolidine and pyridine. Replacing this with a C–N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (Log D) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5 mg/kg resulted in unbound Cmax ~2-fold of its cell potency (PC9 H3K4Me3 0.96 μM), meeting our criteria for an in vivo tool compound from a new scaffold.  相似文献   

14.
The discovery and SAR of a novel series of potent and selective PPARα antagonists are herein described. Exploration of replacements for the labile acyl sulfonamide linker led to a biaryl sulfonamide series of which compound 33 proved to be suitable for further profiling in vivo. Compound 33 demonstrated excellent potency, selectivity against other nuclear hormone receptors, and good pharmacokinetics in mouse.  相似文献   

15.
SAR study of 5-aminooctahydrocyclopentapyrrole-3a-carboxamide scaffold led to identification of several CCR2 antagonists with potent activity in both binding and functional assays. Their cardiovascular safety and pharmacokinetic properties were also evaluated.  相似文献   

16.
Antagonism of the Toll-like receptors (TLRs) 7 and TLR8 has been hypothesized to be beneficial to patients suffering from autoimmune conditions. A phenotypic screen for small molecule antagonists of TLR7/8 was carried out in a murine P4H1 cell line. Compound 1 was identified as a hit that showed antagonistic activity on TLR7 and TLR8 but not TLR9, as shown on human peripheral blood mononuclear cells (hPBMCs). It was functionally cross reactive with mouse TLR7 but lacked oral exposure and had only modest potency. Chemical optimization resulted in 2, which showed in vivo efficacy following intraperitoneal administration. Further optimization resulted in 8 which had excellent in vitro activity, exposure and in vivo activity. Additional work to improve physical properties resulted in 15, an advanced lead that had favorable in vitro and exposure properties. It was further demonstrated that activity of the series tracked with binding to the extracellular domain of TLR7 implicating that the target of this series are endosomal TLRs rather than downstream signaling pathways.  相似文献   

17.
Inhibition of mPGES-1, the terminal enzyme in the arachidonic acid/COX pathway to regulate the production of pro-inflammatory prostaglandin PGE2, is considered an attractive new therapeutic target for safe and effective anti-inflammatory drugs. The discovery of a novel series of orally active, selective benzoxazole piperidinecarboxamides as mPGES-1 inhibitors is described. Structure–activity optimization of lead 5 with cyclohexyl carbinols resulted in compound 12, which showed excellent in vitro potency and selectivity against COX-2, and reasonable pharmacokinetic properties. Further SAR studies of the benzoxazole ring substituents lead to a novel series of highly potent compounds with improved PK profile, including 23, 26, and 29, which were effective in a carrageenan-stimulated guinea pig air pouch model of inflammation. Based on its excellent in vitro and in vivo pharmacological, pharmacokinetic and safety profile and ease of synthesis, compound 26 (PF-4693627) was advanced to clinical studies.  相似文献   

18.
Small molecule antagonists of the vanilloid receptor TRPV1 (also known as VR1) are disclosed. Pyrrolidinyl ureas such as 8 and 15 (SB-705498) emerged as lead compounds following optimisation of the previously described urea SB-452533. Pharmacological studies using electrophysiological and FLIPR-Ca2+-based assays showed that compounds such as 8 and 15 were potent antagonists versus the multiple chemical and physical modes of TRPV1 activation (namely capsaicin, acid and noxious heat). Furthermore, 15 possessed suitable developability properties to enable progression of this compound into in vivo studies and subsequently clinical development.  相似文献   

19.
This report describes the characterization of INCB3344, a novel, potent and selective small molecule antagonist of the mouse CCR2 receptor. The lack of rodent cross-reactivity inherent in the small molecule CCR2 antagonists discovered to date has precluded pharmacological studies of antagonists of this receptor and its therapeutic relevance. In vitro, INCB3344 inhibits the binding of CCL2 to mouse monocytes with nanomolar potency (IC(50) = 10 nM) and displays dose-dependent inhibition of CCL2-mediated functional responses such as ERK phosphorylation and chemotaxis with similar potency. Against a panel of G protein-coupled receptors that includes other CC chemokine receptors, INCB3344 is at least 100-fold selective for CCR2. INCB3344 possesses good oral bioavailability and systemic exposure in rodents that allows in vivo pharmacological studies. INCB3344 treatment results in a dose-dependent inhibition of macrophage influx in a mouse model of delayed-type hypersensitivity. The histopathological analysis of tissues from the delayed-type hypersensitivity model demonstrates that inhibition of CCR2 leads to a substantial reduction in tissue inflammation, suggesting that macrophages play an orchestrating role in immune-based inflammatory reactions. These results led to the investigation of INCB3344 in inflammatory disease models. We demonstrate that therapeutic dosing of INCB3344 significantly reduces disease in mice subjected to experimental autoimmune encephalomyelitis, a model of multiple sclerosis, as well as a rat model of inflammatory arthritis. In summary, we present the first report on the pharmacological characterization of a selective, potent and rodent-active small molecule CCR2 antagonist. These data support targeting this receptor for the treatment of chronic inflammatory diseases.  相似文献   

20.
A novel series of CCR5 antagonists were identified based on the redesign of Schering C. An SAR was established based on inhibition of CCR5 (RANTES) binding and these compounds exhibited potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号