首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 5′-halogenated resiniferatoxin analogs have been investigated in order to examine the effect of halogenation in the A-region on their binding and the functional pattern of agonism/antagonism for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Halogenation at the 5-position in the A-region of RTX and of 4-amino RTX shifted the agonism of parent compounds toward antagonism. The extent of antagonism was greater as the size of the halogen increased (I > Br > Cl > F) while the binding affinities were similar, as previously observed for our potent agonists. In this series, 5-bromo-4-amino RTX (39) showed very potent antagonism with Ki (ant) = 2.81 nM, which was thus 4.5-fold more potent than 5′-iodo RTX, previously reported as a potent TRPV1 antagonist. Molecular modeling analyses with selected agonists and the corresponding halogenated antagonists revealed a striking conformational difference. The 3-methoxy of the A-region in the agonists remained free to interact with the receptor whereas in the case of the antagonists, the compounds assumed a bent conformation, permitting the 3-methoxy to instead form an internal hydrogen bond with the C4-hydroxyl of the diterpene.  相似文献   

2.
The mammalian bombesin (Bn)-receptor family [gastrin-releasing peptide-receptor (GRPR-receptor), neuromedin B-receptor (NMB receptor)], their natural ligands, GRP/NMB, as well as the related orphan receptor, BRS-3, are widely distributed, and frequently overexpressed by tumors. There is increased interest in agonists for this receptor family to explore their roles in physiological/pathophysiological processes, and for receptor-imaging/cytotoxicity in tumors. However, there is minimal data on human pharmacology of Bn receptor agonists and most results are based on nonhuman receptor studies, particular rodent-receptors, which with other receptors frequently differ from human-receptors. To address this issue we compared hNMB-/GRP-receptor affinities and potencies/efficacies of cell activation (assessing phospholipase C activity) for 24 putative Bn-agonists (12 natural, 12 synthetic) in four different cells with these receptors, containing native receptors or receptors expressed at physiological densities, and compared the results to native rat GRP-receptor containing cells (AR42J-cells) or rat NMB receptor cells (C6-glioblastoma cells). There were close correlations (r = 0.92-99, p < 0.0001) between their affinities/potencies for the two hGRP- or hNMB-receptor cells. Twelve analogs had high affinities (≤1 nM) for hGRP receptor with 15 selective for it (greatest = GRP, NMC), eight had high affinity/potencies for hNMB receptors and four were selective for it. Only synthetic Bn analogs containing β-alanine11 had high affinity for hBRS-3, but also had high affinities/potencies for all GRP-/hNMB-receptor cells. There was no correlation between affinities for human GRP receptors and rat GRP receptors (r = 0.131, p = 0.54), but hNMB receptor results correlated with rat NMB receptor (r = 0.71, p < 0.0001). These results elucidate the human and rat GRP-receptor pharmacophore for agonists differs markedly, whereas they do not for NMB receptors, therefore potential GRP-receptor agonists for human studies (such as Bn receptor-imaging/cytotoxicity) must be assessed on human Bn receptors. The current study provides affinities/potencies on a large number of potential agonists that might be useful for human studies.  相似文献   

3.
Summary α-Melanotropin and ACTH, POMC peptides, initiate biological activity by interaction with the classical pigment cell (α-MSH receptor, MC1R) and adrenal gland (ACTH receptor, MC2R) melanocortin receptors, respectively. The recently discovered MC3R, MC4R and MC5R receptors provide new targets and new biological functions for POMC peptides. We have developed conformationally constrained α-melanotropin peptides that interact with all of these receptors as agonists and antagonists and are examining new approaches to obtain highly selective ligands for each of these melanocortin receptors. Previously, we had converted somatostatin-derived peptides into potent and highly selective analogues that act as antagonists at the μ opioid receptors. Using the reverse turn template that came out of these studies, we have designed, de novo, agonist and antagonist peptide analogues that interact with melanocortin receptors.  相似文献   

4.
Obesity is an increasingly important global health problem that lacks current treatment options. The melanocortin receptor 4 (MC4R) is a target for obesity therapies because its activation triggers appetite suppression and increases energy expenditure. Cyclotides have been suggested as scaffolds for the insertion and stabilization of pharmaceutically active peptides. In this study, we explored the development of appetite-reducing peptides by synthesizing MC4R agonists based on the insertion of the His-Phe-Arg-Trp sequence into the cyclotide kalata B1. The ability of the analogues to fold similarly to kalata B1 but display MC4R activity were investigated. Four peptides were synthesized using t-butoxycarbonyl peptide chemistry with a C-terminal thioester to facilitate backbone cyclization. The structures of the peptides were found to be similar to kalata B1, evaluated by Hα NMR chemical shifts. KB1(GHFRWG;23–28) had a Ki of 29 nm at the MC4R and was 107 or 314 times more selective over this receptor than MC1R or MC5R, respectively, and had no detectable binding to MC3R. The peptide had higher affinity for the MC4R than the endogenous agonist, α-melanocyte stimulation hormone, but it was less potent at the MC4R, with an EC50 of 580 nm for activation of the MC4R. In conclusion, we synthesized melanocortin analogues of kalata B1 that preserve the structural scaffold and display receptor binding and functional activity. KB1(GHFRWG;23–28) is potent and selective for the MC4R. This compound validates the use of cyclotides as scaffolds and has the potential to be a new lead for the treatment of obesity.  相似文献   

5.
Melanocortin 4 receptor (MC4R) has an important role in the regulation of energy homeostasis in both mammals and fish. In this study, MC4R was characterized in S. prenanti (Schizothorax prenanti) and designated as SpMC4R. SpMC4R cDNA is composed of 1004 nucleotides with a 978 nucleotide open reading frame encoding a protein of 326 amino acids. The SpMC4R contained predicted regions that were structural features of MCR subtypes of vertebrates. In addition, phylogenetic analyses suggested that S. prenanti MC4R was closely related to fish MC4Rs. The SpMC4R mRNA was detected in embryos at developmental stages. Further, its mRNA was detectable in unfertilized eggs. Using real-time RT-PCR, MC4R is widely expressed, with highest levels of expression in brain and ovary. An experiment was conducted to determine the expression profile of MC4R during short-term and long-term fasting of the brain. The expression level of MC4R in unfed fish was significantly increased at 6, 9 and 24 h post-fasting (hpf) and 14 days fasting than in fed fish, this suggests that MC4R is conserved peptide that might be involved in the regulation of food intake and other physiological function in S. prenanti.  相似文献   

6.
The biological activity for a set of melanocortin-4 receptor (MC4R) agonists containing a piperazine core with an ortho-substituted aryl sulfonamide is described. Compounds from this set had binding and functional activities at MC4R less than 30 nM. The most selective compound in this series was >25,000-fold more potent at MC4R than MC3R, and 490-fold more potent at MC4R than MC5R. This compound also reduced food intake after oral dosing at 25, 50, and 100 mg kg(-1) in fasted mice.  相似文献   

7.
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.Subject terms: Cryoelectron microscopy, Cell signalling  相似文献   

8.
A novel series of piperazines appended to a succinamide backbone were synthesized and found to have a high affinity for the melanocortin-4 receptor (IC(50)s ranging from <0.1 to 200 nM). Both agonists and antagonists of MC4R were prepared by modifying the groups attached to the right-hand side of the succinamide. This series also exhibits a high level of selectivity (up to 7000-fold) over mouse MC1R and human MC3R.  相似文献   

9.
The effects of sulfuric acid, acetic acid, aqueous ammonia, sodium hydroxide, and steam explosion pretreatments of corn stalk on organic acid production by a microbial consortium, MC1, were determined. Steam explosion resulted in a substrate that was most favorable for microbial growth and organic acid productions. The total amounts of organic acids produced by MC1 on steam exploded, sodium hydroxide, sulfuric acid, acetic acid, and aqueous ammonia pretreated corn stalk were 2.99, 2.74, 1.96, 1.45, and 2.21 g/l, respectively after 3 days of fermentation at 50 °C. The most prominent organic products during fermentation of steam-exploded corn stalks were formic (0.86 g/l), acetic (0.59 g/l), propanoic (0.27 g/l), butanoic (0.62 g/l), and lactic acid (0.64 g/l) after 3 days of fermentation; ethanol (0.18 g/l), ethanediol (0.68 g/l), and glycerin (3.06 g/l) were also produced. These compounds would be suitable substrates for conversion to methane by anaerobic digestion.  相似文献   

10.

Aims

Bombesin receptors (BB receptors) and bombesin related peptides are expressed in the lower urinary tract of rodents. Here we investigated whether in vivo activation of BB receptors can contract the urinary bladder and facilitate micturition in sham rats and in a diabetic rat model of voiding dysfunction.

Material and methods

In vivo cystometry experiments were performed in adult female Sprague–Dawley rats under urethane anesthesia. Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.) injection. Experiments were performed 9 and 20 weeks post STZ-treatment. Drugs included neuromedin B (NMB; BB1 receptor preferring agonist), and gastrin-releasing peptide (GRP; BB2 receptor preferring agonist).

Key findings

NMB and GRP (0.01–100 μg/kg in sham rats; 0.1–300 μg/kg in STZ-treated rats, i.v.) increased micturition frequency, bladder contraction amplitude and area under the curve dose dependently in both sham and STZ-treated rats. In addition, NMB (3, 10 μg/kg i.v.) triggered voiding in > 80% of STZ-treated rats when the bladder was filled to a sub-threshold voiding volume. NMB and GRP increased mean arterial pressure and heart rate at the highest doses, 100 and 300 μg/kg.

Significance

Activation of bombesin receptors facilitated neurogenic bladder contractions in vivo. Single applications of agonists enhanced or triggered voiding in sham rats as well as in the STZ-treated rat model of diabetic voiding dysfunction. These results suggest that BB receptors may be targeted for drug development for conditions associated with poor detrusor contraction such as an underactive bladder condition.  相似文献   

11.
A new class of cannabimimetic indoles, with 3-phenylacetyl or substituted 3-phenylacetyl substituents, has been prepared and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. In general those compounds with a 2-substituted phenylacetyl group have good affinity for both receptors. The 4-substituted analogs have little affinity for either receptor, while the 3-substituted compounds are intermediate in their affinities. Two of these compounds, 1-pentyl-3-(2-methylphenylacetyl)indole (JWH-251) and 1-pentyl-3-(3-methoxyphenylacetyl)indole (JWH-302), have 5-fold selectivity for the CB1 receptor with modest affinity for the CB2 receptor. GTPgammaS determinations indicate that both compounds are highly efficacious agonists at the CB1 receptor and partial agonists at the CB2 receptor.  相似文献   

12.
Neuropeptide Y (NPY) and nuclear factor-kappa B (NF-κB) are involved in regulating anorexia elicited by phenylpropanolamine (PPA), a sympathomimetic drug. This study explored whether NPY Y1 receptor (Y1R) is involved in this process, and a potential role for the proopiomelanocortin system was identified. Rats were given PPA once a day for 4 days. Changes in the hypothalamic expression of the NPY, Y1R, NF-κB, and melanocortin receptor 4 (MC4R) levels were assessed and compared. The results indicated that food intake and NPY expression decreased, with the largest reductions observed on Day 2 (approximately 50% and 45%, respectively), whereas NF-κB, MC4R, and Y1R increased, achieving maximums on Day 2 (160%, 200%, and 280%, respectively). To determine the role of Y1R, rats were pretreated with Y1R antisense or a Y1R antagonist via intracerebroventricular injection 1 h before the daily PPA dose. Y1R knockdown and inhibition reduced PPA anorexia and partially restored the normal expression of NPY, MC4R, and NF-κB. The data suggest that hypothalamic Y1R participates in the appetite-suppression from PPA by regulating MC4R and NF-κB. The results of this study increase our understanding of the molecular mechanisms in PPA-induced anorexia.  相似文献   

13.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

14.

Aims

To investigate the role of the melanocortin (MC) system in the framework of the central nucleus of the amygdala (CeA) in the differential effects of the adenosine receptor blocker caffeine on anxiety-like behavior, using the social interaction (SI) test.

Main methods

Caffeine was injected intraperitoneally, alone or in combination with alpha-melanocyte stimulating hormone (α-MSH), the MC4 receptor agonist RO27-3225 or the antagonist HS014 via the intra-CeA route. The effects of chronic (21 days) caffeine, given alone or concurrently with α-MSH, or RO27-3225, were investigated. The effects of withdrawal of these treatments on SI time were also evaluated. Furthermore, the acute effects of HS014 were investigated in different sets of caffeine-withdrawn mice.

Key findings

Acute injection of caffeine, RO27-3225, or α-MSH produced anxiety-like behavior. Prior treatment with α-MSH, or RO27-3225 potentiated the caffeine-induced anxiety-like behavior. Subchronic treatment with HS014 increased the SI time, which was attenuated by caffeine. Chronic administration of caffeine resulted in tolerance to caffeine's anxiogenic effect, while abrupt discontinuation of the treatment produced peak anxiety-like behavior at 72 h post-withdrawal. Concurrent administration of α-MSH, or RO27-3225 with chronic caffeine delayed the development of tolerance and prevented withdrawal-induced anxiety-like behavior. Moreover, acute treatment with HS014 at 72 h post-withdrawal attenuated the anxiety-like behavior.

Significance

α-MSH, possibly via MC4 receptor in the neuroanatomical framework of the CeA, may contribute to the acute, chronic and withdrawal actions of caffeine associated with anxiety-like behavior in the neuroanatomical framework of the CeA.  相似文献   

15.
An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha-melanocortin stimulating hormone (alpha-MSH) in the MC1 and MC4 receptors, respectively. In the presence of peptide agonist, Zn(II) acted as an enhancer on both receptors, because it shifted the dose-response curves to the left: most pronounced was a 6-fold increase in alpha-MSH potency on the MC1 receptor. The effect of the metal ion appeared to be additive, because the maximal cAMP response for alpha-MSH in the presence of Zn(II) was 60% above the maximal response for the peptide alone. The affinity of Zn(II) could be increased through binding of the metal ion in complex with small hydrophobic chelators. The binding affinities and profiles were similar for a number of the 2,2'-bipyridine and 1,10-phenanthroline analogs in complex with Zn(II) in the MC1 and MC4 receptors. However, the potencies and efficacies of the metal-ion complexes were very different in the two receptors, and close to full agonism was obtained in the MC1 receptor. Metal ion-chelator complexes having antagonistic properties were also found. An initial attempt to map the metal-ion binding site in the MC1 receptor indicated that Cys(271) in extracellular loop 3 and possibly Asp(119) at the extracellular end of TM-III, which are both conserved among all MC receptors, are parts of the site. It is concluded that the function of the MC1 and MC4 receptors can be positively modulated by metal ions acting both as partial agonists and as potentiators for other agonists, including the endogenous peptide ligand alpha-MSH at Zn(II) concentrations that could be physiological. Furthermore, the metal ion-chelator complexes may serve as leads in the development of novel melanocortin receptor modulators.  相似文献   

16.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor that plays an essential role in regulating energy homeostasis. Defects in MC4R are the most common monogenic form of obesity, with about 170 distinct mutations identified in human. In addition to the conventional Gs-stimulated adenylyl cyclase pathway, it has been recently demonstrated that MC4R also activates mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 (ERK1/2). Herein, we investigated the potential of four MC4R ligands that are inverse agonists at the Gs-cAMP signaling pathway, including agouti-related peptide (AgRP), MCL0020, Ipsen 5i and ML00253764, to regulate ERK1/2 activation (pERK1/2) in wild type and six naturally occurring constitutively active mutant (CAM) MC4Rs. We showed that these four inverse agonists acted as agonists for the ERK1/2 signaling cascade in wild type and CAM MC4Rs. Three mutants (P230L, L250Q and F280L) had significantly increased pERK1/2 level upon stimulation with all four inverse agonists, with maximal induction ranging from 1.6 to 4.2-fold. D146N had significantly increased pERK1/2 level upon stimulation with AgRP, MCL0020 or ML00253764, but not Ipsen 5i. The pERK1/2 levels of H76R and S127L were significantly increased only upon stimulation with AgRP or MCL0020. In summary, our studies demonstrated for the first time that MC4R inverse agonists at the Gs-cAMP pathway could serve as agonists in the MAPK pathway. These results suggested that there were multiple activation states of MC4R with ligand-specific and/or mutant-specific conformations capable of differentially coupling the MC4R to distinct signaling pathways.  相似文献   

17.
Three series of new N-substituted 1,2,3,4-tetrahydroisoquinolines with 2-, 3-, and 4-membered alkyl chains (a, b, and c, respectively) were synthesized, and the effect of some structural modifications on their 5-HT1A receptor affinities and functional properties was discussed. It was found that the volume of the terminal amide substituent was a crucial parameter which determined 5-HT1A receptor affinities of the tested compounds, while the in vivo activity seemed to depend on both the R-volume and the length of a hydrocarbon chain. It was demonstrated that the most active ligands behaved like agonists or partial agonists at postsynaptic 5-HT1A receptors.  相似文献   

18.
Summary Cyclic lactam analogs of α-melanocyte stimulating hormone (α-MSH) have been shown to be potent agonists in the frog skin bioassay [Al-Obeidi, F. et al., J. Med. Chem., 32 (1989) 2555], demonstrating melanocortin-1 (MC1) receptor activity. We synthesized cyclic α-MSH(1–13) and α-MSH(4–10) lactam analogs. The peptides were synthesized using Fmoc chemistry. We improved the cyclization procedure: side chains of Asp5 and Lys10 from the deprotected peptide were coupled in DMF to form a cyclic lactam, using an excess of PyBOP reagent and DIEA as a base. The cyclization reaction was completed within 1 h and was almost quantitative. We also synthesized an α-MSH analog cyclized via a disulphide bridge. The peptides were tested for their selectivity for the rat MC4 receptor. Cyclization and substitutions at position 7 dramatically influenced the selectivity for the rMC4 receptor.  相似文献   

19.
The synthesis of new amide functionalised ruthenium(II) bis-bipyridyl dithiocarbamate receptor molecules is described. These hosts have been shown to sense the binding of anions electrochemically. Proton NMR titration studies in dmso-d6:MeCN-d3 (1:1) solvent mixtures indicate that the receptors selectively bind dihydrogen phosphate. A single crystal X-ray structure of one receptor reveals the crucial role of amide-anion hydrogen bonding interactions in the binding of sulphate. Cyclic and square wave voltammetric investigations demonstrate that the receptors can sense the binding of anions electrochemically. The addition of dihydrogen phosphate induced the largest cathodic perturbation of the metal centred Ru(II)/(III) dithiocarbamate redox couple (ΔE = 180 mV).  相似文献   

20.
The melanocortin 1 receptor (MC1R) is a dimeric G protein-coupled receptor expressed in melanocytes, where it regulates the amount and type of melanins produced and determines the tanning response to ultraviolet radiation. We have studied the mechanisms of MC1R dimerization. Normal dimerization of a deleted mutant lacking the seventh transmembrane fragment and the C-terminal cytosolic extension excluded coiled-coil interactions as the basis of dimerization. Conversely, the electrophoretic pattern of wild type receptor and several Cys → Ala mutants showed that four disulfide bonds are established between the monomers. Disruption of any of these bonds abolished MC1R function, but only the one involving Cys35 was essential for traffic to the plasma membrane. A quadruple Cys35-267-273-275Ala mutant migrating as a monomer in SDS-PAGE in the absence of reducing agents was able to dimerize with WT, suggesting that in addition to disulfide bond formation, dimerization involves non-covalent interactions, likely of domain swap type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号