首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

2.
This review is focused on the formation of lateral domains in model bilayer membranes, with an emphasis on sphingolipids and their interaction with cholesterol. Sphingolipids in general show a preference for partitioning into ordered domains. One of the roles of cholesterol is apparently to modulate the fluidity of the sphingolipid domains and also to help segregate the domains for functional purposes. Cholesterol shows a preference for sphingomyelin over phosphatidylcholine with corresponding acyl chains. The interaction of cholesterol with different sphingolipids is largely dependent on the molecular properties of the particular sphingolipid in question. Small head group size clearly has a destabilizing effect on sphingolipid/cholesterol interaction, as exemplified by studies with ceramide and ceramide phosphoethanolamine. Ceramides actually displace sterol from ordered domains formed with saturated phosphatidylcholine or sphingomyelin. The N-linked acyl chain is known to be an important stabilizer of the sphingolipid/cholesterol interaction. However, N-acyl phosphatidylethanolamines failed to interact favorably with cholesterol and to form cholesterol-enriched lateral domains in bilayer membranes. Glycosphingolipids also form ordered domains in membranes but do not show a strong preference for interacting with cholesterol. It is clear from the studies reviewed here that small changes in the structure of sphingolipids alter their partitioning between lateral domains substantially.  相似文献   

3.
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.  相似文献   

4.
Cells expressing the E1 and E2 envelope proteins of Semliki Forest virus (SFV) were fused to voltage-clamped planar lipid bilayer membranes at low pH. Formation and evolution of fusion pores were electrically monitored by capacitance measurements, and membrane continuity was tracked by video fluorescence microscopy by including rhodamine-phosphatidylethanolamine in the bilayer. Fusion occurred without leakage for a negative potential applied to the trans side of the planar membrane. When a positive potential was applied, leakage was severe, obscuring the observation of any fusion. E1-mediated cell-cell fusion occurred without leakage for negative intracellular potentials but with substantial leakage for zero membrane potential. Thus, negative membrane potentials are generally required for nonleaky fusion. With planar bilayers as the target, the first fusion pore that formed almost always enlarged; pore flickering was a rare event. Similar to other target membranes, fusion required cholesterol and sphingolipids in the planar membrane. Sphingosine did not support fusion, but both ceramide, with even a minimal acyl chain (C(2)-ceramide), and lysosphingomyelin (lyso-SM) promoted fusion with the same kinetics. Thus, unrelated modifications to different parts of sphingosine yielded sphingolipids that supported fusion to the same degree. Fusion studies of pyrene-labeled SFV with cholesterol-containing liposomes showed that C(2)-ceramide supported fusion while lyso-SM did not, apparently due to its positive curvature effects. A model is proposed in which the hydroxyls of C-1 and C-3 as well as N of C-2 of the sphingosine backbone must orient so as to form multiple hydrogen bonds to amino acids of SFV E1 for fusion to proceed.  相似文献   

5.
We report here our differential scanning calorimetry measurements investigating the thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two saturated sterols with different ring configurations (5β-H and either 3α-OH or 3β-OH). These measurements differ in the proportions of sharp and broad components in the heating endotherms, representing the melting of the sterol-poor and sterol-rich lipid micro-domains of the DPPC bilayer, respectively. Our results suggest that the 5,10-cis ring configuration of both saturated sterols and the ring A conformations have the greatest influence on DPPC bilayer properties, most likely by inducing small increases in the mean area/molecule as compared to cholesterol. However, the C3-OH orientation also influences sterol miscibility, likely due to variations in the strength and number of interfacial H-bonds with changes in molecular area, which in turn probably reflect the depth of the sterol in the DPPC bilayer. This influence of C3-OH orientation is significantly greater than was observed in our earlier study of cholesterol/- and epicholesterol/DPPC mixtures. Overall, our results show that both saturated and unsaturated 3α-ols are less miscible than the corresponding 3β-ols, but that the presence of a Δ5 double bond can improve the sterol miscibility in the DPPC bilayer at high sterol concentrations.  相似文献   

6.
Sterols and sphingolipids are limited to eukaryotic cells, and their interaction has been proposed to favor formation of lipid microdomains. Although there is abundant biophysical evidence demonstrating their interaction in simple systems, convincing evidence is lacking to show that they function together in cells. Using lipid analysis by mass spectrometry and a genetic approach on mutants in sterol metabolism, we show that cells adjust their membrane composition in response to mutant sterol structures preferentially by changing their sphingolipid composition. Systematic combination of mutations in sterol biosynthesis with mutants in sphingolipid hydroxylation and head group turnover give a large number of synthetic and suppression phenotypes. Our unbiased approach provides compelling evidence that sterols and sphingolipids function together in cells. We were not able to correlate any cellular phenotype we measured with plasma membrane fluidity as measured using fluorescence anisotropy. This questions whether the increase in liquid order phases that can be induced by sterol–sphingolipid interactions plays an important role in cells. Our data revealing that cells have a mechanism to sense the quality of their membrane sterol composition has led us to suggest that proteins might recognize sterol–sphingolipid complexes and to hypothesize the coevolution of sterols and sphingolipids.  相似文献   

7.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

8.
Cells expressing the hemagglutinin protein of influenza virus were fused to planar bilayer membranes containing the fluorescent lipid probes octadecylrhodamine (R18) or indocarbocyanine (DiI) to investigate whether spontaneous curvature of each monolayer of a target membrane affects the growth of fusion pores. R18 and DiI lowered the transition temperatures for formation of an inverted hexagonal phase, indicating that these probes facilitate the formation of negative curvature structures. The probes are known to translocate from one monolayer of a bilayer membrane to the other in a voltage-dependent manner. The spontaneous curvature of the cis monolayer (facing the cells) or the trans monolayer could therefore be made more negative through control of the polarity of voltage across the planar membrane. Electrical admittance measurements showed that the open times of flickering fusion pores were shorter when probes were in trans monolayers and longer when in cis monolayers compared with times when probe was symmetrically distributed. Open times were the same for probe symmetrically distributed as when probes were not present. Thus, open times were a function of the asymmetry of the spontaneous curvature between the trans and cis monolayers. Enriching the cis monolayer with a negative curvature probe reduced the probability that a small pore would fully enlarge, whereas enriching the trans monolayer promoted enlargement. Lysophosphatidylcholine has positive spontaneous curvature and does not translocate. When lysophosphatidylcholine was placed in trans leaflets of planar membranes, closing of fusion pores was rare. The effects of the negative and positive spontaneous curvature probes do not support the hypothesis that a flickering pore closes from an open state within a hemifusion diaphragm (essentially a “flat” structure). Rather, such effects support the hypothesis that the membrane surrounding the open pore forms a three-dimensional hourglass shape from which the pore flickers shut.  相似文献   

9.
Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking.Typical examples of eukaryotic lipids, sterols, and sphingolipids can both be found in membranes from simple unicellular fungi and protists to multicellular animals and plants. Their versatile use as structural elements but also as signaling molecules has probably played an important role during the evolution of this large and diverse group of organisms. There are also many eukaryotes that have lost the ability to synthesize sterols de novo including nematodes, insects, and marine invertebrates, which have to take up sterols with their diet. Sterol biosynthesis has also been reported in a number of bacteria. Sphingolipids are more widely spread among prokaryotes than sterols and also show a greater variety of structures among the different eukaryotes.In this short review we will first give an overview about the diversity of sterol and sphingolipid structures and their distribution in nature. Then we will discuss their subcellular distribution. A brief technical section will add some information on the separation and detection of these lipid molecules. Subsequently, we will summarize different genetic approaches to study the functions of sterols and sphingolipids, and finally, we will discuss the functional and possible physical interactions of the two lipid classes within the cell. Far from being comprehensive, we will focus only on a few interesting aspects and try to give new view points, which are less frequently discussed.  相似文献   

10.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

11.
The essential oxygen requirement for sterol biosynthesis dates this molecule as a relative latecomer in cellular evolution. Structural details of the cholesterol molecule and related sterols can be rationalized in terms of optimal hydrophobic interactions between the planar sterol ring system and phospholipid acyl chains in the membrane bilayer. The prediction that the cholesterol precursor lanosterol (4,4',14 trimethyl cholastadienol) is incompetent for membrane function is verified by in vivo experiments with eucaryotic sterol auxotrophs and microviscosity measurements of sterol-containing artificial membranes. For procaryotic cells the sterol specificity is very much broader. Methylococcus capsulatus produces 4,4-dimethyl- and 4-monomethyl sterols, but not sterols of the cholesterol type. Similarly lanosterol and its partially demethylated derivatives satisfy the sterol requirement of Mycoplasma capricolum. A more primitive but unspecified role of cyclized squalene derivatives is therefore postulated for procaryotic membranes. The finding that cholesterylmethyl ether satisfies the sterol requirement of certain microbial systems is at variance with current views on the role played by the sterol hydroxyl group in membrane organization and function.  相似文献   

12.
The present work was devoted to the exploration of the role of sterols in the functioning of membranes in root cells. Membrane characteristics and composition of the membrane lipids in the roots of wheat (Triticum aestivum L.) seedlings treated with exogenous cholesterol and antibiotic nystatin, which specifically binds with endogenous sterols, were analyzed. Cholesterol caused a fall of membrane potential, acidification of the incubation medium, decrease in potassium leakage of roots, and increase in the level of exogenous superoxide radical. Similarly to cholesterol, the application of nystatin also induced the depolarization of the plasma membrane, but in contrast with cholesterol it was accompanied by alkalinization of the incubation medium and decrease in the level of exogenous superoxide radical. Analysis of membrane lipids showed that following nystatin treatment the total sterol content in roots did not change, while the level of complex sphingolipids represented mainly by glycoceramides became higher. Using mass spectrometry with electrospray ionization (+ESI-MS) for the analysis of the glycoceramide composition, we showed that nystatin induced changes in the ratios of molecular species of glycoceramides. It was suggested that the modification of the sterol component of plasma membrane could influence membrane functioning by changing the sphingolipid composition of lipid rafts.  相似文献   

13.
Time-resolved admittance measurements were used to follow formation of individual fusion pores connecting influenza virus hemagglutinin (HA)- expressing cells to planar bilayer membranes. By measuring in-phase, out-of-phase, and dc components of currents, pore conductances were resolved with millisecond time resolution. Fusion pores developed in stages, from small pores flickering open and closed, to small successful pores that remained open until enlarging their lumens to sizes greater than those of viral nucleocapsids. The kinetics of fusion and the properties of fusion pores were studied as functions of density of the fusion protein HA. The consequences of treating cell surfaces with proteases that do not affect HA were also investigated. Fusion kinetics were described by waiting time distributions from triggering fusion, by lowering pH, to the moment of pore formation. The kinetics of pore formation became faster as the density of active HA was made greater or when cell surface proteins were extensively cleaved with proteases. In accord with this faster kinetics, the intervals between transient pore openings within the flickering stage were shorter for higher HA density and more extensive cell surface treatment. Whereas the kinetics of fusion depended on HA density, the lifetimes of open fusion pores were independent of HA density. However, the lifetimes of open pores were affected by the proteolytic treatment of the cells. Faster fusion kinetics correlated with shorter pore openings. We conclude that the density of fusion protein strongly affects the kinetics of fusion pore formation, but that once formed, pore evolution is not under control of fusion proteins but rather under the influence of mechanical forces, such as membrane bending and tension.  相似文献   

14.
The high sterol concentration in eukaryotic cell membranes is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila cannot synthesize sterols, but do require them for development. Does this simply reflect a requirement for sterols in steroid hormone biosynthesis, or is bulk membrane sterol also essential in Drosophila? If the latter is true, how do they survive fluctuations in sterol availability and maintain membrane homeostasis? Here, we show that Drosophila require both bulk membrane sterol and steroid hormones in order to complete adult development. When sterol availability is restricted, Drosophila larvae modulate their growth to maintain membrane sterol levels within tight limits. When dietary sterol drops below a minimal threshold, larvae arrest growth and development in a reversible manner. Strikingly, membrane sterol levels in arrested larvae are dramatically reduced (dropping sixfold on average) in most tissues except the nervous system. Thus, sterols are dispensable for maintaining the basic membrane biophysical properties required for cell viability; these functions can be performed by non-sterol lipids when sterols are unavailable. However, bulk membrane sterol is likely to have essential functions in specific tissues during development. In tissues in which sterol levels drop, the overall level of sphingolipids increases and the proportion of different sphingolipid variants is altered. These changes allow survival, but not growth, when membrane sterol levels are low. This relationship between sterols and sphingolipids could be an ancient and conserved principle of membrane homeostasis.  相似文献   

15.
Ordered lipid domains enriched in sphingolipids and cholesterol (lipid rafts) have been implicated in numerous functions in biological membranes. We recently found that lipid domain/raft formation is dependent on the sterol component having a structure that allows tight packing with lipids having saturated acyl chains (Xu, X., and London, E. (2000) Biochemistry 39, 844-849). In this study, the domain-promoting activities of various natural sterols were compared with that of cholesterol using both fluorescence quenching and detergent insolubility methods. Using model membranes, it was shown that, like cholesterol, both plant and fungal sterols promote the formation of tightly packed, ordered lipid domains by lipids with saturated acyl chains. Surprisingly ergosterol, a fungal sterol, and 7-dehydrocholesterol, a sterol present in elevated levels in Smith-Lemli-Opitz syndrome, were both significantly more strongly domain-promoting than cholesterol. Domain formation was also affected by the structure of the sphingolipid (or that of an equivalent "saturated" phospholipid) component. Sterols had pronounced effects on domain formation by sphingomyelin and dipalmitoylphosphatidylcholine but only a weak influence on the ability of cerebrosides to form domains. Strikingly it was found that a small amount of ceramide (3 mol %) significantly stabilized domain/raft formation. The molecular basis for, and the implications of, the effects of different sterols and sphingolipids (especially ceramide) on the behavior and biological function of rafts are discussed.  相似文献   

16.
Amphidinol 3 (AM3), a polyhydroxy-polyene metabolite from the dinoflagellate Amphidinium klebsii, possesses potent antifungal activity. AM3 is known to interact directly with membrane sterols and permeabilize membranes by forming pores. Because AM3 binds to sterols such as cholesterol and ergosterol, it can be assumed that AM3 has some impact on lipid rafts, which are membrane domains rich in sphingolipids and cholesterol. Hence, we first examined the effect of AM3 on phase-separated liposomes, in which raft-like ordered and non-raft-like disordered domains are segregated. Consequently, AM3 disrupted the phase separation at 22 μM, as in the case of methyl-β-cyclodextrin, a well-known raft-disrupter that extracts sterol from membranes. The surface plasmon resonance measurements and dye leakage assays show that AM3 preferentially recognizes cholesterol in the disordered membrane, which may reflect a weaker lipid-cholesterol interaction in disordered membrane than in ordered membrane. Finally, to gain insight into the AM3-induced coalescence of membrane phases, we measured membrane fluidity using fluorescence correlation spectroscopy, demonstrating that AM3 significantly increases the order of disordered phase. Together, AM3 preferentially binds to the disordered phase rather than the ordered phase, and enhances the order of the disordered phase, consequently blending the separated phases.  相似文献   

17.
We have studied the fusion between voltage-clamped planar lipid bilayers and influenza virus infected MDCK cells, adhered to one side of the bilayer, using measurements of electrical admittance and fluorescence. The changes in currents in-phase and 90 degrees out-of- phase with respect to the applied sinusoidal voltage were used to monitor the addition of the cell membrane capacitance to that of the lipid bilayer through a fusion pore connecting the two membranes. When ethidium bromide was included in the solution of the cell-free side of the bilayer, increases in cell fluorescence accompanied tee admittance changes, independently confirming that these changes were due to formation of a fusion pore. Fusion required acidic pH on the cell- containing side and depended on temperature. For fusion to occur, the influenza hemagglutinin (HA) had to be cleaved into HA1 and HA2 subunits. The incorporation of gangliosides into the planar bilayers greatly augmented fusion. Fusion pores developed in four distinct stages after acidification: (a) a pre-pore, electrically quiescent stage; (b) a flickering stage, with 1-2 nS pores opening and closing repetitively; (c) an irreversibly opened stage, in which pore conductances varied between 2 and 100 nS and exhibited diverse kinetics; (d) a fully opened stage, initiated by an instantaneous, time- resolution limited, increase in conductance leveling at approximately 500 nS. The expansion of pores by stages has also been shown to occur during exocytosis in mast cells and fusion of HA-expressing cells and erythrocytes. We conclude that essential features of fusion pores are produced with proteins in just one of the two fusing membranes.  相似文献   

18.
It is known that ceramides can influence the lateral organization in biological membranes. In particular ceramides have been shown to alter the composition of cholesterol and sphingolipid enriched nanoscopic domains, by displacing cholesterol, and forming gel phase domains with sphingomyelin. Here we have investigated how the bilayer content of ceramides and their chain length influence sterol partitioning into the membranes. The effect of ceramides with saturated chains ranging from 4 to 24 carbons in length was investigated. In addition, unsaturated 18:1- and 24:1-ceramides were also examined. The sterol partitioning into bilayer membranes was studied by measuring the distribution of cholestatrienol, a fluorescent cholesterol analogue, between methyl-β-cyclodextrin and large unilamellar vesicle with defined lipid composition. Up to 15 mol% ceramide was added to bilayers composed of DOPC:PSM:cholesterol (3:1:1), and the effect on sterol partitioning was measured. Both at 23 and 37 °C addition of ceramide affected the sterol partitioning in a chain length dependent manner, so that the ceramides with intermediate chain lengths were the most effective in reducing sterol partitioning into the membranes. At 23 °C the 18:1-ceramide was not as effective at inhibiting sterol partitioning into the vesicles as its saturated equivalent, but at 37 °C the additional double bond had no effect. The longer 24:1-ceramide behaved as 24:0-ceramide at both temperatures. In conclusion, this work shows how the distribution of sterols within sphingomyelin-containing membranes is affected by the acyl chain composition in ceramides. The overall membrane partitioning measured in this study reflects the differential partitioning of sterol into ordered domains where ceramides compete with the sterol for association with sphingomyelin.  相似文献   

19.
Vibrio cholerae cytolysin (VCC) forms oligomeric pores in lipid bilayers containing cholesterol. Membrane permeabilization is inefficient if the sterol is embedded within bilayers prepared from phosphatidylcholine only but is greatly enhanced if the target membrane also contains ceramide. Although the enhancement of VCC action is stereospecific with respect to cholesterol, we show here that no such specificity applies to the two stereocenters in ceramide; all four stereoisomers of ceramide enhanced VCC activity in cholesterol-containing bilayers. A wide variety of ceramide analogs were as effective as D-erythro-ceramide, as was diacylglycerol, suggesting that the effect of ceramide exemplifies a general trend of lipids with a small headgroup to augment the activity of VCC. Incorporation of these cone-shaped lipids into cholesterol-containing bilayers also gave similar effects with streptolysin O, another cholesterol-specific but structurally unrelated cytolysin. In contrast, the activity of staphylococcal alpha-hemolysin, which does not share with the other toxins the requirement for cholesterol, was far less affected by the presence of lipids with a conical shape. The collective data indicate that sphingolipids and glycerolipids do not interact with the cytolysins specifically. Instead, lipids that have a conical molecular shape appear to effect a change in the energetic state of membrane cholesterol that in turn augments the interaction of the sterol with the cholesterol-specific cytolysins.  相似文献   

20.
Nystatin and amphotericin B induce a cation-selective conductance when added to one side of a lipid bilayer membrane and an anion-selective conductance when added to both sides. The concentrations of antibiotic required for the one-sided action are comparable to those employed on plasma membranes and are considerably larger than those required for the two-sided action. We propose that the two-sided effect results from the formation of aqueous pores formed by the hydrogen bonding in the middle of the bilayer of two "half pores," whereas the one-sided effect results from the half pores alone. We discuss, in terms of the flexibility of bilayer structure and its thickness, how it is possible to have conducting half pores and "complete pores" in the same membrane. The role of sterol (cholesterol and ergosterol) in pore formation is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号