首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP sulfurylase from Penicillium chrysogenum is an allosteric enzyme in which Cys-509 is critical for maintaining the R state. Cys-509 is located in a C-terminal domain that is 42% identical to the conserved core of adenosine 5'-phosphosulfate (adenylylsulfate) (APS) kinase. This domain is believed to provide the binding site for the allosteric effector, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Replacement of Cys-509 with either Tyr or Ser destabilizes the R state, resulting in an enzyme that is intrinsically cooperative at pH 8 in the absence of PAPS. The kinetics of C509Y resemble those of the wild type enzyme in which Cys-509 has been covalently modified. The kinetics of C509S resemble those of the wild type enzyme in the presence of PAPS. It is likely that the negative charge on the Cys-509 side chain helps to stabilize the R state. Treatment of the enzyme with a low level of trypsin results in cleavage at Lys-527, a residue that lies in a region analogous to a PAPS motif-containing mobile loop of true APS kinase. Both mutant enzymes were cleaved more rapidly than the wild type enzyme, suggesting that movement of the mobile loop occurs during the R to T transition.  相似文献   

2.
The two sulfate-activating enzymes, ATP-sulfurylase (EC 2.7.7.4) and adenosine-5'-phosphosulfate kinase (adenylylsulfate kinase, EC 2.7.1.25), were each purified about 2000-fold from crude rat chondrosarcoma homogenate. Throughout a purification protocol which included Sephacryl S-300 gel filtration, DEAE-Sephadex ion exchange, hydroxylapatite, and ATP-agarose affinity chromatography, these two activities consistently co-purified. ATP-sulfurylase and adenosine-5'-phosphosulfate kinase each showed a pH optima of 7.0-7.4 and a bimodal temperature optima of 46 and 52-54 degrees C. Both activities preferred Mg2+ as their divalent cation source over Mn2+, Co2+, or Zn2+. The apparent Km values determined for adenosine 5'-phosphosulfate in both assays was 1-5 microM; the Km for pyrophosphate in the sulfurylase reaction was 40 microM and for ATP in the kinase reaction was 5 mM. Gel electrophoresis indicated major bands at Mr = 160,000 in nondenaturing systems and 35,000-37,000 and 60,000 under dissociative conditions, whereas gel filtration of the most highly purified fractions yielded a coincident peak in the molecular weight range 260,000.  相似文献   

3.
High concentration of ATP is found to activate Ca-dependent ATPase from sarcoplasmic reticulum both in membrane fraction and in purified enzyme preparation. The treatment of Ca-ATPase preparation with tripsin results in the elimination of the activating effect of ATP, which is accompanied by the disappearance of 100.000 molecular weight protein and by the appearance of fragments with molecular weight of 45.000 and 55.000. Repeated freezing of the enzyme preparation eliminates activating effect of ATP. ATP action is analysed from the viewpoint of allosteric kinetics, which postulates the existence of two Ca-ATPase conformers, their mutual conversion being induced by ATP binding at allosteric center. Kinetic parameters of the conformers studied are calculated.  相似文献   

4.
The activity of myocardial adenosine kinase (E.N. 2.7.1.20) in a number of species was assayed. Rat heart contained the highest specific activity. From this source adenosine kinase was purified in a simple way 80-fold, until it was free of adenosine deaminase activity. A molecular weight of about 39 000 was measured. NSC 113939 (1), NSC 113940 and 8-azaadenosine inhibited myocardial adenosine kinase. Dipyridamole stimulated the enzyme at high adenosine levels, and inhibited at low substrate concentrations. A number of divalent cations could (partially) substitute for Mg2+. The optimal concentration of MgCl2 or MnCl2 was about 0.5 mM; concentrations exceeding 1 mM inhibited severely. An apparent Km for ATP of 0.1 mM was measured, whereas an apparent Km for adenosine of 0.5 muM was was found. The latter increased to 3.3 muM, when dipyridamole was added. Replacement of ATP by GTB or ITP increased the activity, and UTP and CTP were inferior as a phosphate donor.  相似文献   

5.
Human placental deoxyadenosine and deoxyguanosine phosphorylating activity   总被引:2,自引:0,他引:2  
We studied deoxyadenosine and deoxyguanosine phosphorylating activities in human placental cytosol. The specific activities of nucleoside kinase enzymes in nanomoles per h per mg +/- SD were as follows: adenosine kinase, 30 +/- 14; deoxyadenosine kinase, 12 +/- 2; deoxycytidine kinase, 0.30 +/- 0.04; and deoxyguanosine kinase, 27 +/- 16. Three major activities were resolved by ion exchange and affinity chromatography: deoxyguanosine-deoxycytidine kinase, deoxycytidine-deoxyadenosine kinase, and adenosine-deoxyadenosine kinase. Two other activities contained significant quantities of deoxyadenosine kinase. Deoxyguanosine-phosphorylating activity eluted as a single peak in association with deoxycytidine kinase. This deoxyguanosine-deoxycytidine kinase had an apparent molecular weight of 54,000, a Stokes radius of 31 A, and apparent Km values of 10, 130, and 14 microM for deoxyguanosine, deoxycytidine, and ATP, respectively. Four peaks of deoxyadenosine phosphorylating activity were resolved by affinity chromatography with AMP-Sepharose 4B. Adenosine-deoxyadenosine kinase had an apparent molecular weight of 38,000, a Stokes radius of 27.4 A, and apparent Km values of 0.4, 510, and 75 microM for adenosine, deoxyadenosine, and ATP, respectively. Attempts to distinguish whether adenosine-deoxyadenosine kinase was one enzyme with these two activities or two separate enzymes suggested that the former was the case. Deoxycytidine-deoxyadenosine kinase had apparent Km values of 0.7, 670, and 12 microM for deoxycytidine, deoxyadenosine, and ATP, respectively. Its apparent molecular weight was estimated to be 49,000 and its Stokes radius 30 A. Two other minor peaks of deoxyadenosine-phosphorylating activity had characteristics different from either deoxycytidine kinase or adenosine kinase-associated deoxyadenosine kinase. Our studies indicate that human placental cytosol contains a complex mixture of nucleoside kinase enzymes.  相似文献   

6.
Peng W  Liu X  Zhang W  Li G 《Biophysical chemistry》2003,106(3):267-273
The titratable potentiometric response of hemoglobin (Hb) induced by adenosine-5'-triphosphate (ATP) is observed. The concentration-dependent effect of ATP on the anaerobic redox reaction of the protein at pH 7.0 reflects that ATP will induce stabilization of the reduced state and destabilization of the R-like (met Fe(III)) state of the metHb, when ATP concentration is lower than 3.0 mM. But when ATP concentration is between 4 and 7 mM, shift of the oxidation potential may also be observed. With reference to the study of adenosine, adenosine-5'-monophosphate, adenosine-5'-diphosphate and 2,3-diphosphoglycerate, the allosteric effect of ATP on Hb is discussed extensively. This study has given an electrochemical approach to the investigation of effect of ATP, an in vivo allosteric effector, on Hb in the physiological concentration range.  相似文献   

7.
ATP sulfurylase from Penicillium chrysogenum is a homohexameric enzyme that is subject to allosteric inhibition by 3'-phosphoadenosine 5'-phosphosulfate. In contrast to the wild type enzyme, recombinant ATP sulfurylase lacking the C-terminal allosteric domain was monomeric and noncooperative. All kcat values were decreased (the adenosine 5'-phosphosulfate (adenylylsulfate) (APS) synthesis reaction to 17% of the wild type value). Additionally, the Michaelis constants for MgATP and sulfate (or molybdate), the dissociation constant of E.APS, and the monovalent oxyanion dissociation constants of dead end E.MgATP.oxyanion complexes were all increased. APS release (the k6 step) was rate-limiting in the wild type enzyme. Without the C-terminal domain, the composite k5 step (isomerization of the central complex and MgPPi release) became rate-limiting. The cumulative results indicate that besides (a) serving as a receptor for the allosteric inhibitor, the C-terminal domain (b) stabilizes the hexameric structure and indirectly, individual subunits. Additionally, (c) the domain interacts with and perfects the catalytic site such that one or more steps following the formation of the binary E.MgATP and E.SO4(2-) complexes and preceding the release of MgPPi are optimized. The more negative entropy of activation of the truncated enzyme for APS synthesis is consistent with a role of the C-terminal domain in promoting the effective orientation of MgATP and sulfate at the active site.  相似文献   

8.
Adenosine deaminase (EC 3.5.4.4) was found to occur in the extract of Azotobacter vinelandii, strain 0, and purified by heating at 65°C, fractionation with ammonium sulfate, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. Purified adenosine deaminase was effectively stabilized by the addition of ethylene glycol. The molecular weight of the enzyme was estimated to be 66,000 by gel filtration on Sephadex G-150. The enzyme specifically attacked adenosine and 2-deoxyadenosine to the same extent, and formycin A to a lesser extent. The pH optimum of the enzyme was observed at pH 7.2. Double reciprocal plot of initial velocity versus adenosine concentration was concave upward, and Hill interaction coefficient was calculated to be 1.5, suggesting the allosteric binding of the substrate. ATP inhibited adenosine deaminase in an allosteric manner, whereas other nucleotides were without effect. The physiological significance of the enzyme was discussed in relation to salvage pathway of purine nucleotides.  相似文献   

9.
The influence of ATP on complex formation of phosphorylase kinase (PhK) with glycogen in the presence of Ca(2+) and Mg(2+) has been studied. The initial rate of complex formation decreases with increasing ATP concentration, the dependence of the initial rate on the concentration of ATP having a cooperative character. Formation of the complex of PhK with glycogen in the presence of ATP occurs after a lag period, which increases with increasing ATP concentration. The dependence of the initial rate of complex formation (v) on the concentration of non-hydrolyzed ATP analogue, beta,gamma-methylene-ATP, follows the hyperbolic law. A correlation between PhK-glycogen complex formation and (32)P incorporation catalyzed by PhK itself and by the catalytic subunit of cAMP-dependent protein kinase has been shown. For ADP (the product and allosteric effector of the PhK reaction) the dependence of v on ADP concentration has a complicated form, probably due to the sequential binding of ADP at two allosteric sites on the beta subunit and the active site on the gamma subunit.  相似文献   

10.
  • 1.1. The addition of sulfide to sea-water in respirometer flasks stimulated oxygen uptake by intact Solemya velum; at concentrations of 0.5 and 0.8 mM, the experimental rates were 1.8 and 2.5 times control rates.
  • 2.2. Extracts of gill tissue catalyzed the conversion of thiosulfate to sulfite, the production of adenosine phosphosulfate (APS) from AMP and sulfite and the formation of ATP from APS. The enzymes, thiosulfate sulfurtransferase (EC 2.8.1.1), adenylsulfate reductase (EC 1.8.99.2) and sulfate adenylyl transferase (EC 2.7.7.4) have Km and Vmax in the same range as similar enzymes in other species.
  • 3.3. Calculations based on these experiments suggest that adenylylsulfate reduction is ordinarily catalyzed at no more than 8% of maximum velocity.
  相似文献   

11.
MacRae IJ  Segel IH  Fisher AJ 《Biochemistry》2001,40(23):6795-6804
ATP sulfurylase from Penicillium chrysogenum is an allosterically regulated enzyme composed of six identical 63.7 kDa subunits (573 residues). The C-terminal allosteric domain of each subunit is homologous to APS kinase. In the presence of APS, the enzyme crystallized in the orthorhombic space group (I222) with unit cell parameters of a = 135.7 A, b = 162.1 A, and c = 273.0 A. The X-ray structure at 2.8 A resolution established that the hexameric enzyme is a dimer of triads in the shape of an oblate ellipsoid 140 A diameter x 70 A. Each subunit is divided into a discreet N-terminal domain, a central catalytic domain, and a C-terminal allosteric domain. Two molecules of APS bound per subunit clearly identify the catalytic and allosteric domains. The sequence 197QXRN200 is largely responsible for anchoring the phosphosulfate group of APS at the active site of the catalytic domain. The specificity of the catalytic site for adenine nucleotides is established by specific hydrogen bonds to the protein main chain. APS was bound to the allosteric site through sequence-specific interactions with amino acid side chains that are conserved in true APS kinase. Within a given triad, the allosteric domain of one subunit interacts with the catalytic domain of another. There are also allosteric-allosteric, allosteric-N-terminal, and catalytic-catalytic domain interactions across the triad interface. The overall interactions-each subunit with four others-provide stability to the hexamer as well as a way to propagate a concerted allosteric transition. The structure presented here is believed to be the R state. A solvent channel, 15-70 A wide exists along the 3-fold axis, but substrates have access to the catalytic site only from the external medium. On the other hand, a surface "trench" links each catalytic site in one triad with an allosteric site in the other triad. This trench may be a vestigial feature of a bifunctional ("PAPS synthetase") ancestor of fungal ATP sulfurylase.  相似文献   

12.
The tissue distribution of the defective PAPS synthetic pathway in homozygous brachymorphic mice (bmbm) has been investigated using four different criteria: (i) incorporation of 35SO42? into adenosine 5′-phosphosulfate (APS), 3′-phosphoadenosine 5′-phosphosulfate (PAPS), and endogenous macromolecular acceptors, (ii) APS kinase (adenylylsulfate kinase; ATP:adenylylsulfate 3′-phosphotransferase, EC 2.7.1.25) activity, (iii) ATP sulfurylase (sulfate adenylyltransferase; ATP:sulfate adenylyltransferase, EC 2.7.7.4) activity, (iv) thermostability of ATP sulfurylase. With respect to the first three criteria, the results indicate that liver is affected as profoundly as cartilage (K. Sugahara and N. B. Schwartz, Arch. Biochem. Biophys. (1982) 214, 589–601). In contrast, skin and brain show no differences between normal and mutant. Kidney is significantly, but only moderately, affected. The results from thermostability studies demonstrate that ATP sulfurylase activity is more labile in bmbm cartilage, liver, and kidney, but not in skin or brain, supporting the above-observed distribution of the defect. Therefore, the present results indicate a multiple, but not universal, tissue distribution of the defective PAPS synthetic pathway in bmbm mice. Furthermore, these findings support the suggestion that ATP sulfurylase as well as APS kinase is defective in brachymorphic mice.  相似文献   

13.
R Chakravarty  S Ikeda  D H Ives 《Biochemistry》1984,23(25):6235-6240
Base-line separation of two paired deoxynucleoside kinase activities (deoxycytidine/deoxyadenosine and deoxyguanosine/deoxyadenosine kinase), previously resolved as overlapping peaks from Blue Sepharose, has now been achieved. The improved separation and recovery in relatively small volumes were accomplished by eluting Blue Sepharose with a bisubstrate mixture: 0.5 mM dCyd plus 1 mM ATP released dCyd/dAdo kinase, and 1 mM dGuo plus 5 mM ATP eluted dGuo/dAdo kinase. The latter pair of activities showed copurification through UDP-Sepharose affinity chromatography and HPLC anion-exchange chromatography. The HPLC preparation appeared to be homogeneous, on the basis of nondenaturing polyacrylamide gel electrophoresis at several gel concentrations and pH values. Both dGuo and dAdo kinase activities coincided with the protein band. A single band of protein was also observed upon sodium dodecyl sulfate gel electrophoresis. The estimated molecular weight of the denatured protein (56 000) agrees closely with values obtained for native activity by sedimentation equilibrium or gel permeation chromatography. The rate of dAdo phosphorylation was found to be stimulated more than 3-fold by the presence of dGuo, and dGuo kinase was also slightly activated by the presence of dAdo. This mutual activation indicates that dGuo and dAdo kinase activities do not share a common site. Selective chemical inactivation of dGuo kinase by 5'-[p-(fluorosulfonyl)benzoyl]adenosine eliminated the ability of dGuo to stimulate dAdo kinase in parallel with the loss of dGuo kinase activity. These lines of evidence strongly suggest that dGuo and dAdo kinase activities are functions of separate sites on a monomeric polypeptide and that these sites may be in allosteric communication.  相似文献   

14.
We studied the ability of ATP to inhibit in vitro the degrading activity of insulin-degrading enzyme. The enzyme was purified from rat skeletal muscle by successive chromatographic steps. The last purification step showed two bands at 110 and 60 kDa in polyacrylamide gel. The enzyme was characterized by its insulin degradation activity, the substrate competition of unlabeled to labeled insulin, the profile of enzyme inhibitors, and the recognition by a specific antibody. One to 5 mM ATP induced a dose-dependent inhibition of insulin degradation (determined by trichloroacetic acid precipitation and insulin antibody binding). Inhibition by 3 mM adenosine 5'-diphosphate, adenosine 5'-monophosphate, guanosine 5'-triphosphate, pyrophosphate, beta-gamma-methyleneadenosine 5'-triphosphate, adenosine 5'-O-(3 thiotriphosphate), and dibutiryl cyclic adenosine 5'-monophosphate was 74%, 4%, 38%, 46%, 65%, 36%, and 0%, respectively, of that produced by 3 mM ATP. Kinetic analysis of ATP inhibition suggested an allosteric effect as the plot of 1/v (insulin degradation) versus ATP concentration was not linear and the Hill coefficient was more than 1 (1.51 and 2.44). The binding constant for allosteric inhibition was KiT = 1.5 x 10(-7) M showing a decrease of enzyme affinity induced by ATP. We conclude that ATP has an inhibitory effect on the insulin degradation activity of the enzyme.  相似文献   

15.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

16.
Isolation and characterization of adenosine kinase from Leishmania donovani   总被引:3,自引:0,他引:3  
Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified 3250-fold from Leishmania donovani promastigotes using ion-exchange, gel filtration, and affinity chromatography techniques. Both native and sodium dodecyl sulfate-gel electrophoresis of the enzyme revealed a single polypeptide of around 38,000 molecular weight. Biophysical and biochemical analyses of the enzyme reveal unique characteristics different from those of adenosine kinases from other eukaryotic sources. The isoelectric pH of the enzyme is 8.8. In native acrylamide gels the enzyme moves with an RF of about 0.62. The enzyme displays a maximum activity at pH between 7.5 and 8.5 and is dependent upon an optimum ATP/Mg2+ ratio. ATP at high concentration inhibits the reaction. Adenosine and Mg2+ are not inhibitory. EDTA completely knocks off the activity. Enzyme activity is dependent upon the presence of active thiol group(s) at or near the active center. Under a defined set of conditions the enzyme exhibited an apparent Km for adenosine and ATP of 33 and 50 microM, respectively. Of the nucleoside triphosphates tested ATP and GTP were the most effective phosphate donors. Marginal inhibition of activity was detected with other nucleosides as competitors. However, adenosine analogs, such as 7-deaza-adenosine (tubercidin) and 6-methylmercaptopurine riboside at very low concentrations, were found to be excellent inhibitors and substrates as well. S-Adenosylhomocysteine does not inhibit the reaction even at very high concentration.  相似文献   

17.
The phosphorylation of pig liver pyruvate kinase by cyclic adenosine 3':5'-monophosphate-dependent protein kinase has been studied. For comparison, mixed histone and a synthetic heptapeptide were also used as substrates. Protein kinase was purified by chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-200. The enzyme was stimulated by cyclic AMP with apparent Ka values of 2.5 and 0.8 x 10-7 M for pyruvate kinase and histone substrates, respectively. Divalent cations were essential for the activity of the protein kinase. Variation of the concentration of ATP resulted in approximately straight lines in Lineweaver-Burk plots for the phosphorylation of both pyruvate kinase and mixed histone. The apparent Km values for ATP were 21 and 11 muM, respectively. The phosphorylation rate increased with the concentration of pyruvate kinase even at a concentration of 2 muM pyruvate kinase. At a high ionic strength, the phosphorylation rate of both pyruvate kinase and histone decreased. The phosphorylation rate varied markedly with pH in imidazole/HC1 and Tris/HC1 buffers. At slightly alkaline pH values, pyruvate kinase was phosphorylated at a much higher rate than pH7, but this was not the case for histone. At pH 8.5, the phosphorylation rate of pyruvate kinase was 3.5 times the rate at pH 7, while the corresponding increase for the histone phosphorylation was 50 per cent. In potassium phosphate buffers, the phosphorylation rate of both substrates did not change significantly over the pH range studied. Arrhenius' plots of the protein kinase reaction resulted in a break at about 10 degrees when pyruvate kinase was used as substrate, whereas a straight line was obtained when using histone. The negative allosteric effectors of pyruvate kinase, alanine, and phenylalanine, increased the phosphorylation rate of pyruvate kinase at pH 8 by 50 and 120 per cent, respectively. The same effectors did not influence the phosphorylation rate of mixed histone or a synthetic heptapeptide. It is concluded that the conformations adopted by pyruvate kinase in the presence of allosteric inhibitors make it a better substrate for the protein kinase.  相似文献   

18.
Extracts of Acetobacter xylinum catalyze the phosphorylation of glycerol and dihydroxyacetone (DHA) by adenosine 5'-triphosphate (ATP) to form, respectively, L-alpha-glycerophosphate and DHA phosphate. The ability to promote phosphorylation of glycerol and DHA was higher in glycerol-grown cells than in glucose- or succinate-grown cells. The activity of glycerol kinase in extracts is compatible with the overall rate of glycerol oxidation in vivo. The glycerol-DHA kinase has been purified 210-fold from extracts, and its molecular weight was determined to be 50,000 by gel filtration. The glycerol kinase to DHA kinase activity ratio remained essentially constant at 1.6 at all stages of purification. The optimal pH for both reactions was 8.4 to 9.2. Reaction rates with the purified enzyme were hyperbolic functions of glycerol, DHA, and ATP. The Km for glycerol is 0.5 mM and that for DHA is 5 mM; both are independent of the ATP concentration. The Km for ATP in both kinase reactions is 0.5 mM and is independent of glycerol and DHA concentrations. Glycerol and DHA are competitive substrates with Ki values equal to their respective Km values as substrates. D-Glyceraldehyde and l-Glyceraldehyde were not phosphorylated and did not inhibit the enzyme. Among the nucleotide triphosphates tested, only ATP was active as the phosphoryl group donor. Fructose diphosphate (FDP) inhibited both kinase activities competitively with respect to ATP (Ki= 0.02 mM) and noncompetitively with respect to glycerol and DHA. Adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) inhibited both enzymic activities competitively with respect to ATP (Ki (ADP) = 0.4 mM; Ki (AMP) =0.25 mM). A. xylinum cells with a high FDP content did not grow on glycerol. Depletion of cellular FDP by starvation enabled rapid growth on glycerol. It is concluded that a single enzyme from A. xylinum is responsible for the phosphorylation of both glycerol and DHA. This as well as the sensitivity of the enzyme to inhibition by FDP and AMP suggest that it has a regulatory role in glycerol metabolism.  相似文献   

19.
Biosynthesis of the undersulfated proteoglycan found in brachymorphic mouse (bm/ bm) cartilage has been investigated. Similar amounts of cartilage proteoglycan core protein, as measured by radioimmune inhibition assay, and comparable activity levels of four of the glycosyltransferases requisite for synthesis of chondroitin sulfate chains were found in cartilage homogenates from neonatal bm/bm and normal mice, suggesting normal production of glycosylated core protein acceptor for sulfation. When incubated with 35S-labeled 3′-phosphoadenosine 5′-phosphosulfate (PAPS), bm/bm cartilage extracts showed a higher than control level of sulfotransferase activity. In contrast, when synthesis was initiated from ATP and 35SO42?, mutant cartilage extracts showed lower incorporation of 35SO42? into endogenous chondroitin sulfate proteoglycan (19% of control level) and greatly reduced formation of PAPS (10% of control level). Results from coincubations of normal and mutant cartilage extracts exhibited intermediate levels of sulfate incorporation into PAPS and endogenous acceptors, suggesting the absence of an inhibitor for sulfate-activating enzymes or sulfotransferases. Degradation rates of 35S]PAPS and of 35S-labeled adenosine 5′-phosphosulfate (APS) were comparable in bm/bm and normal cartilage extracts. Specific assays for both ATP sulfurylase (sulfate adenylyltransferase; ATP:sulfate adenylyltransferase, EC 2.7.7.4) and APS kinase (adenylylsulfate kinase; ATP:adenylylsulfate 3′-phosphotransferase, EC 2.7.1.25) showed decreases in the former (50% of control) and the latter (10–15% of control) enzyme activities in bm/bm cartilage extracts. Both enzyme activities were reduced to intermediate levels in extracts of cartilage from heterozygous brachymorphic mice (ATP-sulfurylase, 80% of control; APS kinase, 40–70% of control). Furthermore, the moderate reduction in ATP sulfurylase activity in bm/bm cartilage extracts was accompanied by increased lability to freezing and thawing of the residual activity of this enzyme. These results indicate that under-sulfation of chondroitin sulfate proteoglycan in bm/bm cartilage is due to a defect in synthesis of the sulfate donor (PAPS), resulting from diminished activities of both ATP sulfurylase and APS kinase, although the reduced activity of the latter enzyme seems to be primarily responsible for the defect in PAPS synthesis.  相似文献   

20.
Isolation of phosphoglycerate kinases by affinity chromatography   总被引:9,自引:0,他引:9  
A variety of Sepharose derivatives containing DL-O-phosphorylserine or adenosine nucleotides with different points of attachment, has been synthesized and tested for affinity to phosphoglycerate kinase. The most effective gels contained periodate-oxidized ATP or ADP bound via the ribose by hydrazone formation to adipoyl-dihydrazo-Sepharose. The effect of pH, magnesium and buffer ions on the binding capacity of the ATP derivative of Sepharose has been examined. Optimal elution of phosphoglycerate kinase was investigated using different combinations of adenosine nucleotides, 3-phosphogylcerate and magnesium ions. A method is presented giving conditions for the purification of phosphoglycerate kinase from different sources (spinach, human erythrocytes, human, rabbit and trout muscle). It includes extract preparation, affinity chromatography and gel filtration. The method is greatly superior to known isolation procedures by virtue of its technical simplicity, excellent yield (85-100%) and reproducability. The capacity of the ATP-ribosyl-adipoyl-dihydrazo-Sepharose was 5 mg phosphoglycerate kinase per 1 g of matrix. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate indicated that the final products are homogeneous. The phosphoglycerate kinases from different sources appear to have the same affinity for this ATP derivative of Sepharose, the same molecular weight and the same specific activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号