首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Visual latencies, and their variation with stimulus attributes, can provide information about the level in the visual system at which different attributes of the image are analysed, and decisions about them made. A change in the colour, structure or movement of a visual stimulus brings about a highly reproducible transient constriction of the pupil that probably depends on visual cortical mechanisms. We measured this transient response to changes in several attributes of visual stimuli, and also measured manual reaction times to the same stimulus changes. Through analysis of latencies, we hoped to establish whether changes in different stimulus attributes were processed by mechanisms at the same or different levels in the visual pathway. Pupil responses to a change in spatial structure or colour are almost identical, but both are ca. 40 ms slower than those to a change in light flux, which are thought to depend largely on subcortical pathways. Manual reaction times to a change in spatial structure or colour, or to the onset of coherent movement, differ reliably, and all are longer than the reaction time to a change in light flux. On average, observers take 184 ms to detect a change in light flux, 6 ms more to detect the onset of a grating, 30 ms more to detect a change in colour, and 37 ms more to detect the onset of coherent motion. The pattern of latency variation for pupil responses and reaction times suggests that the mechanisms that trigger the responses lie at different levels in cortex. Given our present knowledge of visual cortical organization, the long reaction time to the change in motion is surprising. The range of reaction times across different stimuli is consistent with decisions about the onset of a grating being made in V1 and decisions about the change in colour or change in motion being made in V4.  相似文献   

2.
The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information (‘what’) across different channels, temporal coincidence (‘when’) along with spatial coincidence (‘where’) provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2–3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4–9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed ‘what’ and ‘when’ properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in ‘when’ processing, the binding performance reflects the central temporal limit of integrating ‘when’ and ‘what’ properties.  相似文献   

3.
In tennis, as in many disciplines of sport, fine spatio-temporal resolution is required to reach optimal performance. While many studies on tennis have focused on anticipatory skills or decision making, fewer have investigated the underlying visual perception abilities. In this study, we used a battery of seven visual tests that allowed us to assess which kind of visual information processing is performed better by tennis players than other athletes (triathletes) and non-athletes. We found that certain time-related skills, such as speed discrimination, are superior in tennis players compared to non-athletes and triathletes. Such tasks might be used to improve tennis performance in the future.  相似文献   

4.
In the quest for deciphering the neural code, theoretical advances were made which allow for the determination of the information rate inherent in the spike trains of nerve cells. However, up to now, the dependence of the information rate on stimulus parameters has not been studied in any neuron in a systematic way. Here, I investigate the information carried by the spike trains of H1, a motion-sensitive visual interneuron of the blowfly (Calliphora vicina) using a moving grating as a stimulus. Stimulus parameters fall in two classes: those that have only a minor effect on the information rate like increasing the frequency bandwidth or the maximum amplitude of the stimulus velocity, and those which dramatically affect the neural information rate, like varying the spatial size or the contrast of the visual pattern being moved. It appears that, for a broad range of complex stimuli, the neuron covers the stimulus with its whole response repertoire regardless of the stimulus entropy, with the information rate being limited by the noise of the stimulus and the neural hardware.  相似文献   

5.
Recombination, the precise physical breakage and rejoining of DNA between homologous chromosomes, plays a central role in mediating the orderly segregation of meiotic chromosomes in most eukaryotes. Despite its importance, the factors that control the number and placement of recombination events within a cell remain poorly defined. The rate of recombination exhibits remarkable species specificity, and, within a species, recombination is affected by the physical size of the chromosome, chromosomal location, proximity to other recombination events (i.e., chiasma interference), and, intriguingly, the sex of the transmitting parent. To distinguish between simple genetic and nongenetic explanations of sex-specific recombination differences in mammals, we compared recombination in meiocytes from XY sex-reversed and XO females with that in meiocytes from XX female and XY male mice. The rate and pattern of recombination in XY and XO oocytes were virtually identical to those in normal XX females, indicating that sex, not genotype, is the primary determinant of meiotic recombination patterns in mammals.  相似文献   

6.
The ways in which information about faces is represented and stored in the temporal lobe visual areas of primates, as shown by recordings from single neurons in macaques, are considered. Some neurons that respond primarily to faces are found in the cortex in the anterior part of the superior temporal sulcus (in which neurons are especially likely to be tuned to facial expression and to face movement involved in gesture), and in the TE areas more ventrally forming the inferior temporal gyrus (in which neurons are more likely to have responses related to the identity of faces). Quantitative studies of the responses of the neurons that respond differently to the faces of different individuals show that information about the identity of the individual is represented by the responses of a population of neurons, that is, ensemble encoding rather than 'grandmother cell' encoding is used. It is argued that this type of tuning is a delicate compromise between very fine tuning, which has the advantage of low interference in neuronal network operations but the disadvantage of losing the useful properties (such as generalization, completion and graceful degradation) of storage in neuronal networks, and broad tuning, which has the advantage of allowing these properties of neuronal networks to be realized but the disadvantage of leading to interference between the different memories stored in an associative network. There is evidence that the responses of some of these neurons are altered by experience so that new stimuli become incorporated in the network. It is shown that the representation that is built in temporal cortical areas shows considerable invariance for size, contrast, spatial frequency and translation. Thus the representation is in a form which is particularly useful for storage and as an output from the visual system. It is also shown that one of the representations that is built is object based, which is suitable for recognition and as an input to associative memory, and that another is viewer centred, which is appropriate for conveying information about gesture. Ways are considered in which such cortical representations might be built by competitive self-organization aided by back projections in the multi-stage cortical processing hierarchy which has convergence from stage to stage.  相似文献   

7.
Lifetime analysis of tryptophan fluorescence of the mitochondrial processing peptidase (MPP) from Saccharomyces cerevisiae clearly proved that substrate binding evoked a conformational change of the alpha-subunit while presence of substrate influenced neither the lifetime components nor the average lifetime of the tryptophan excited state of the beta-MPP subunit. Interestingly, lifetime analysis of tryptophan fluorescence decay of the alpha-MPP subunit revealed about 11% of steady-state fractional intensity due to the long-lived lifetime component, indicating that at least one tryptophan residue is partly buried at the hydrophobic microenvironment. Computer modeling, however, predicted none of three tryptophans, which the alpha-subunit contains, as deeply buried in the protein matrix. We conclude this as a consequence of a possible dimeric (oligomeric) structure.  相似文献   

8.
Cortico-cortical connections occurring within the temporal lobe and afferent projections to the temporal cortex particularly from the prefrontal and parahippocampal areas were studied in the monkey by means of retrograde axonal transport of horseradish peroxidase (HRP) or wheat-germ-agglutinin-conjugated HRP (WGA-HRP). In particular, 0.1-0.3 microliter of 50% HRP or 5% WGA-HRP was injected into various parts of the temporal cortex, i.e. the rostral (TEr), the caudal (TEc), and the most caudal (TEO) parts of the inferotemporal cortex, the superior temporal gyrus, and the temporal pole (TG), and in the upper bank of the inferior arcuate sulcus in the frontal lobe. Labeled cells, which represent cells of origin of association fibers projecting to the injection site, appeared in various cortical regions. The main findings of the present study are the following. The temporal pole (TG) receives fibers almost exclusively from the most rostral part of the TE. The rostral part of the TE receives many fibers from both the caudal part of the TE and the TEO. The caudal part of the TE receives fibers from the TEO, and the TEO from the prestriate cortex (OA and OB). Taking these findings together, the morphological basis of the "step-wise" progression of visual impulses from the prestriate cortex to the TEO, TE and finally to the TG is clearly presented. The superior temporal gyrus (TA or area 22) receives most fibers from the dorsolateral frontal gyrus, while the inferotemporal cortex (TE or areas 21 and 20) receives most fibers from the ventrolateral frontal gyrus (inferior frontal convexity). Both the temporal pole (TG) and the inferotemporal cortex (TE) receives a fair number of fibers from the parahippocampal region (TH and TF).  相似文献   

9.
Two distinct conceptualisations of processing mechanisms have been proposed in the research on the perception of temporal order, one that assumes a central-timing mechanism that is involved in the detection of temporal order independent of modality and stimulus type, another one assuming feature-specific mechanisms that are dependent on stimulus properties. In the present study, four different temporal-order judgement tasks were compared to test these two conceptualisations, that is, to determine whether common processes underlie temporal-order thresholds over different modalities and stimulus types or whether distinct processes are related to each task. Measurements varied regarding modality (visual and auditory) and stimulus properties (auditory modality: clicks and tones; visual modality: colour and position). Results indicate that the click and the tone paradigm, as well as the colour and position paradigm, correlate with each other. Besides these intra-modal relationships, cross-modal correlations show dependencies between the click, the colour and the position tasks. Both processing mechanisms seem to influence the detection of temporal order. While two different tones are integrated and processed by a more independent, possibly feature-specific mechanism, a more central, modality-independent timing mechanism contributes to the click, colour and position condition.  相似文献   

10.
Proper function of visual arrestin is indispensable for rapid signal shut-off in rod photoreceptors. Dramatic light-dependent changes in its subcellular localization are believed to play an important role in light adaptation of photoreceptor cells. Here we show that visual arrestin binds microtubules. The truncated splice variant of visual arrestin, p44, demonstrates dramatically higher affinity for microtubules than the full-length protein (p48). Enhanced microtubule binding of p44 underlies its earlier reported preferential localization to detergent-resistant membranes, where it is anchored via membrane-associated microtubules in a rhodopsin-independent fashion. Experiments with purified proteins demonstrate that arrestin interaction with microtubules is direct and does not require any additional protein partners. Most importantly, arrestin interactions with microtubules and light-activated phosphorylated rhodopsin are mutually exclusive, suggesting that microtubule interaction may play a role in keeping p44 arrestin away from rhodopsin in dark-adapted photoreceptors.  相似文献   

11.
12.
E. L. Astrachan 《Oecologia》1977,31(1):131-132
Summary A simple stochastic model of logistic population growth is considered. The criterion for eventual extinction is a function of population growth rate, not of carrying capacity.  相似文献   

13.
Dominance not richness determines invasibility of tallgrass prairie   总被引:9,自引:0,他引:9  
Many recent studies suggest that more diverse communities are more resistant to invasion. Community characteristics that most strongly influence invasion are uncertain, however, due to covariation of diversity with competition and crowding. We examined separately the effects of species richness and dominance on invasion by an exotic legume, Melilotus officinalis , in intact, native Kansas grassland. We manipulated dominance of C4 grasses by reducing their abundance (i.e. ramet densities) by ∼25 and 50%. In addition, richness was reduced by removing species that were mainly rare and uncommon as might be expected with environmental changes such as drought and fragmentation. In both years of the study (2001–2002), invasibility, measured as peak establishment of Melilotus , was not affected by a 3-fold reduction in species richness, nor was there an interaction between loss of species and reduced dominance on invasion. In contrast, reductions in abundance of the dominants significantly reduced invasibility of the grassland plots in both years. Because the abundance of dominants was highly correlated with measures of competition (i.e. ratio of dominant biomass to total biomass) and crowding (total stem densities), this pattern was opposite to that expected if competition were indeed limiting invasion. Rather, invasion appeared to be facilitated by the dominant species, most likely because reduced dominance increased environmental stress. Our results suggest that dominance is the key community characteristic determining invasibility, because highly competitive and space-filling species can either enhance or reduce susceptibility to invasion depending on whether dominants create a more competitive environment or alleviate stressful conditions.  相似文献   

14.
Lesica NA  Grothe B 《PloS one》2008,3(2):e1655
In this study, we investigate the ability of the mammalian auditory pathway to adapt its strategy for temporal processing under natural stimulus conditions. We derive temporal receptive fields from the responses of neurons in the inferior colliculus to vocalization stimuli with and without additional ambient noise. We find that the onset of ambient noise evokes a change in receptive field dynamics that corresponds to a change from bandpass to lowpass temporal filtering. We show that these changes occur within a few hundred milliseconds of the onset of the noise and are evident across a range of overall stimulus intensities. Using a simple model, we illustrate how these changes in temporal processing exploit differences in the statistical properties of vocalizations and ambient noises to increase the information in the neural response in a manner consistent with the principles of efficient coding.  相似文献   

15.
Janssen P  Vogels R  Liu Y  Orban GA 《Neuron》2003,37(4):693-701
Stereoscopic vision requires the correspondence problem to be solved, i.e., discarding "false" matches between images of the two eyes, while keeping correct ones. To advance our understanding of the underlying neuronal mechanisms, we compared single neuron responses to correlated and anticorrelated random dot stereograms (RDSs). Inferior temporal neurons, which respond selectively to disparity-defined three-dimensional shapes, showed robust selectivity for correlated RDSs portraying concave or convex surfaces, but unlike neurons in areas V1, MT/V5, and MST, were not selective for anticorrelated RDSs. These results show that the correspondence problem is solved at least in far extrastriate cortex, as it is in the monkey's perception.  相似文献   

16.
17.
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.  相似文献   

18.
Our understanding of how the visual system processes motion transparency, the phenomenon by which multiple directions of motion are perceived to coexist in the same spatial region, has grown considerably in the past decade. There is compelling evidence that the process is driven by global-motion mechanisms. Consequently, although transparently moving surfaces are readily segmented over an extended space, the visual system cannot separate two motion signals that coexist in the same local region. A related issue is whether the visual system can detect transparently moving surfaces simultaneously or whether the component signals encounter a serial 'bottleneck' during their processing. Our initial results show that, at sufficiently short stimulus durations, observers cannot accurately detect two superimposed directions; yet they have no difficulty in detecting one pattern direction in noise, supporting the serial-bottleneck scenario. However, in a second experiment, the difference in performance between the two tasks disappears when the component patterns are segregated. This discrepancy between the processing of transparent and non-overlapping patterns may be a consequence of suppressed activity of global-motion mechanisms when the transparent surfaces are presented in the same depth plane. To test this explanation, we repeated our initial experiment while separating the motion components in depth. The marked improvement in performance leads us to conclude that transparent motion signals are represented simultaneously.  相似文献   

19.
The latent periods of saccadic eye movements in response to peripheral visual stimuli were measured in 8 right-handed healthy subjects using Posner's paradigm "COST-BENEFIT". In 6 subjects, the saccade latency in response to visual target presented in expected location in valid condition was shorter than that in neutral condition ("benefit"). Increase in saccade latency in response to the visual target presented in unexpected location in valid condition versus neutral condition took place only in 4 subjects ("cost"). A decrease in left-directed saccade latency in response to expected target presented in the left hemifield and increase in saccade latency in response to unexpected left target in comparison with analogous right-directed saccades were observed in valid condition. This phenomenon can be explained by the dominance of the right hemisphere in the processes of spatial orientation and "disengage" of attention.  相似文献   

20.
Radioimmunotherapy using antibodies with favorable tumor targeting properties and high binding affinity is increasingly applied in cancer therapy. The potential of this valuable cancer treatment modality could be further improved by increasing the specific activity of the labeled proteins. This can be done either by coupling a large number of chelators which leads to a decreased immunoreactivity or by conjugating a small number of multimeric chelators. In order to systematically investigate the influence of conjugations on immunoreactivity with respect to size and number of the conjugates, the anti-EGFR antibody hMAb425 was reacted with PAMAM dendrimers of different size containing up to 128 chelating agents per conjugation site. An improved dendrimer synthesis protocol was established to obtain compounds of high homogeneity suitable for the formation of defined protein conjugates. The quantitative derivatization of the PAMAM dendrimers with DOTA moieties and the characterization of the products by isotopic dilution titration using (111)In/(nat)In are shown. The DOTA-containing dendrimers were conjugated with high efficiency to hMAb425 by applying Sulfo-SMCC as cross-linking agent and a 10- to 25-fold excess of the thiol-containing dendrimers. The determination of the immunoreactivities of the antibody-dendrimer conjugates by FACS analysis revealed a median retained immunoreactivity of 62.3% for 1.7 derivatization sites per antibody molecule, 55.4% for 2.8, 27.9% for 5.3, and 17.1% for 10.0 derivatization sites per antibody but no significant differences in immunoreactivity for different dendrimer sizes. These results show that the dendrimer size does not influence the immunoreactivity of the derivatized antibody significantly over a wide molecular weight range, whereas the number of derivatization sites has a crucial effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号