首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chlorella Beijerinck (Chlorellaceae, Trebouxiophyceae) strains from the collection of the National Institute for Environmental Studies (NIES) were characterized using gene sequence data. The misidentification of a number of strains was rectified. Chlorella vulgaris Beijerinck NIES‐2173 was reclassified as C. sorokiniana Shihira et Krauss. Chlorella sp. NIES‐2171 was described as a new species in the genus Micractinium Fresinius, M. inermum Hoshina et Fujiwara. Chlorella sorokiniana NIES‐2167 and Chlorella sp. NIES‐2330 were found to be phylogenetically related to Didymogenes Schmidle. We propose these two strains be transferred to the genus Didymogenes and given new names: D. sphaerica Hoshina et Fujiwara and D. soliella Hoshina et Fujiwara. Taxonomic decisions were primarily based on small subunit‐internal transcribed spacer ribosomal DNA phylogeny for genus assignment and ITS2 sequence‐structure to determine species autonomy. Our findings suggest that this strategy is the most effective way to use the species concept among autosporic coccoids.  相似文献   

2.
3.
Many species belonging to the coccoid green algae genus Coelastrella are considered potential candidates for the large-scale production of natural pigments and biofuels. However, little is known about the structural, functional and molecular aspects of the chloroplast genomes (cpDNAs) of this genus. In the present study, the complete sequence of the cpDNA of strain FACHB-2138, which was further identified as Coelastrella saipanensis Hanagata based on morphological and molecular analyses, was elucidated. The 196 140 bp cpDNA sequence that was assembled as a circular map was found to possess the typical quadripartite structure. The two identical copies of 11 897 bp inverted repeat (IR) sequences were separated from one another by single copy regions. The large single copy region (LSC) was 104 949 bp, whereas the small single copy region (SSC) was 67 397 bp. The cpDNA encoded a total of 96 unique genes, which included 67 protein-coding genes, three rRNA genes and 26 tRNA genes. A total of 19 group I introns were annotated in this genome. Comparative analyses with three species from the family Scenedesmaceae showed C. saipanensis had a slightly expanded genome, higher GC content and less skewed distribution of its genes between the two DNA strands than that of the other three species. The cpDNA data deduced from the present study helps to expand our present understanding of plant systematics and phylogenetic reconstruction, and identify the possible biotechnological applications of the species belonging to the studied taxa.  相似文献   

4.
The genetic relationships of nine strains of Chlorella saccharophila were determined by DNA hybridization techniques. Four strains are closely related to the type strain 211-9a and one strain seems to be moderately related, whereas the taxonomic position of the remaining three strains is not clear. C. saccharophila, like C. sorokiniana, is another species of Chlorella containing strains which are heterogeneous in their overall DNA base sequence and partly also in morphological, biochemical and physiological characters.  相似文献   

5.
6.
Summary An EcoRI 2.7 kbp fragment from Chlorella ellipsoidea chloroplast DNA (cpDNA) cloned in YIp5 was shown to promote autonomous replication in Saccharomyces cerevisiae. The fragment was localized in the small single copy region close to the inverted repeat. The ARS activity (autonomously replicating sequences in yeast) was found to be confined within a subclone of a ca. 300 bp HindIII fragment. Sequence analysis of this fragment revealed its high AT content and the presence of several direct and inverted repeats and a few elements that were related to the yeast ARS consensus sequence. Electron microscopic studies revealed that this sequence did not coincide with the primary replication origin of chloroplast DNA. The functioning of this sequence as a possible origin of plasmid replication in vivo is discussed. This is the first report on Chlorella cpDNA sequence. re]19850821 rv]19851211 ac]19851216  相似文献   

7.
The nucleotide sequence of the complete chloroplast genome of a basal angiosperm, Calycanthus fertilis, has been determined. The circular 153337 bp long cpDNA is colinear with those of tobacco, Arabidopsis and spinach. A total of 133 predicted genes (115 individual gene species, 18 genes duplicated in the inverted repeats) including 88 potential protein-coding genes (81 gene species), 8 ribosomal RNA genes (4 gene species) and 37 tRNA genes (30 gene species) representing 20 amino acids were identified based on similarity to their homologs from other chloroplast genomes. This is the highest gene number ever registered in an angiosperm plastome. Calycanthus fertilis cpDNA also contains a homolog of the recently discovered mitochondrial ACRS gene. Since no gene transfer from mitochondria to the chloroplast has ever been documented, we investigated the evolutionary affinity of this gene in detail. Phylogenetic analysis of the protein-coding subset of the plastome suggests that the ancient line of Laurales emerged after the split of the angiosperms into monocots and dicots. Calycanthus fertilis Walter var. ferax (Michy.) Rehder is a synonym of C. floridus L. var. glaucus (Willd.) Torr. & A. Gray.Data deposition: The sequence reported in this paper has been deposited in the EMBL database (accession no. AJ428413).  相似文献   

8.
李娟  童家赟  范智超  童毅 《广西植物》2023,43(11):2008-2023
为确定桃叶珊瑚属(Aucuba)植物叶绿体基因组的结构及其序列变异,揭示其属下种间亲缘关系,该研究对桃叶珊瑚(A. chinensis)、花叶青木(A. japonica var. variegata)等6种桃叶珊瑚属植物和丝缨花属植物黄杨叶丝缨花(Garrya buxifolia)进行二代测序,利用生物信息学软件对其叶绿体基因组序列进行组装和注释,并进行基本特征分析、序列比较以及系统发育分析。结果表明:(1)桃叶珊瑚属植物叶绿体基因组具典型的环状四分体结构,6条序列全长157 891~158 325 bp,均编码114个基因,包括80个蛋白质编码基因、30个tRNA基因和4个rRNA基因。(2)6种植物叶绿体基因组高频密码子数均为29个,偏好以A/U结尾,确定了这6条序列的最优密码子共100个,包含12个共有的最优密码子。(3)6条叶绿体基因组序列共检测到270条散在重复序列,133条串联重复序列以及412个SSR位点。(4)比较基因组学分析结果表明,该属植物叶绿体基因组序列高度保守。(5)从叶绿体基因组中筛选出10个高变片段。(6)系统发育分析结果显示支持桃叶珊瑚属为一个支持率较高的单系,与丝缨花属关系较近。该研究中的5种桃叶珊瑚属植物以及1种丝缨花属植物的叶绿体基因组均为首次测序组装,揭示了桃叶珊瑚属及其属下种间的系统发育关系,为桃叶珊瑚属植物的分类鉴定和系统发育提供了参考资料。  相似文献   

9.
10.
Summary The chloroplast genomes of three sets of Petunia somatic hybrids were analyzed to examine the relationship between chloroplast DNA (cpDNA) composition and cytoplasmic male sterility (CMS). Chloroplast genomes of somatic hybrid plants were identified either by restriction and electrophoresis of purified cpDNAs or by hybridization of total DNA digests with cloned cpDNA probes that distinguish the parental genomes.The chloroplast genomes of a set of seven somatic hybrids derived from the fusion of Petunia CMS line 2423 and fertile line 3699 were analyzed. All seven plants were fertile, and all exhibited the cpDNA restriction pattern of the sterile cytoplasm. Similarly, four fertile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3677 were found to contain the CMS chloroplast genome. The cpDNA compositions of four fertile and two sterile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3704 were determined by restriction analysis of purified cpDNAs; all six plants exhibited the cpDNA restriction pattern of line 3704. Thus the CMS phenotype segregates independently of the chloroplast genome in Petunia somatic hybrids, indicating that CMS in Petunia is not specified by the chloroplast genome.  相似文献   

11.
Shi C  Hu N  Huang H  Gao J  Zhao YJ  Gao LZ 《PloS one》2012,7(2):e31468

Background

Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA) extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs.

Methodology/Principal Findings

We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa) sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40–50% cpDNA purity is achieved with our method.

Conclusion

Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.  相似文献   

12.
Summary Isolated chloroplasts from Pisum sativum were found to contain at least 32 tRNA species. Hybridization of in vitro labeled, identified, chloroplast tRNAs to Pisum chloroplast DNA fragments revealed the locations of the tRNA genes on the circular chloroplast genome. Comparison of this gene map to the maps of Vicia faba and Phaseolus vulgaris showed that the chloroplast genomes of Pisum and Phaseolus are otherwise more closely related than either genome is to the chloroplast genome of Vicia. Furthermore, the results suggest how possible recombination events could be involved in the evolution of these three closely related, but divergent, chloroplast genomes.  相似文献   

13.
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.  相似文献   

14.
Simple sequence repeats (SSR) and their flanking regions in the mitochondrial and chloroplast genomes were sequenced in order to reveal DNA sequence variation. This information was used to gain new insights into phylogenetic relationships among species in the genus Oryza. Seven mitochondrial and five chloroplast SSR loci equal to or longer than ten mononucleotide repeats were chosen from known rice mitochondrial and chloroplast genome sequences. A total of 50 accessions of Oryza that represented six different diploid genomes and three different allopolyploid genomes of Oryza species were analyzed. Many base substitutions and deletions/insertions were identified in the SSR loci as well as their flanking regions. Of mononucleotide SSR, G (or C) repeats were more variable than A (or T) repeats. Results obtained by chloroplast and mitochondrial SSR analyses showed similar phylogenetic relationships among species, although chloroplast SSR were more informative because of their higher sequence diversity. The CC genome is suggested to be the maternal parent for the two BBCC genome species (O. punctata and O. minuta) and the CCDD species O. latifolia, based on the high level of sequence conservation between the diploid CC genome species and these allotetraploid species. This is the first report of phylogenetic analysis among plant species, based on mitochondrial and chloroplast SSR and their flanking sequences.  相似文献   

15.
Several strains of terrestrial algae isolated from biological soil crusts in Germany and Ukraine were identified by morphological methods as the widely distributed species Dictyosphaerium minutum (=Dictyosphaerium chlorelloides). Investigation of the phylogeny showed their position unexpectedly outside of Chlorellaceae (Trebouxiophyceae) and distantly from Chlorella chlorelloides, to which this taxon was attributed after revision of the genus Chlorella based on an integrative approach. SSU rRNA phylogeny determined the position of our strains inside a clade recently described as a new genus of the cryptic alga Xerochlorella olmiae isolated from desert biological soil crusts in the United States. Investigation of the morphology of the authentic strain of X. olmiae showed Dictyosphaerium-like morphology, as well as some other characters, common for our strains and morphospecies D. minutum. The latter alga was described as terrestrial and subsequently united with the earlier described aquatic representative D. chlorelloides because of their similar morphology. The revision of Chlorella mentioned above provided only one aquatic strain (D. chlorelloides), which determined its position in the genus. But terrestrial strains of the morphospecies were not investigated phylogenetically. Our study showed that the terrestrial D. minutum is not related to the morphologically similar D. chlorelloides (=Chlorella chlorelloides, Chlorellaceae), and instead represented a separate lineage in the Trebouxiophyceae, recently described as genus Xerochlorella. Therefore, revision of Xerochlorella is proposed, including nomenclatural combinations, epitypifications, and emendations of two species: X. minuta and X. dichotoma. New characters of the genus based on investigation of morphology and ultrastructure were determined.  相似文献   

16.
Yamamoto M  Kurihara I  Kawano S 《Planta》2005,221(6):766-775
Autosporulation is a common mode of propagation for unicellular algae. Autospore-forming species of Chlorellaceae, Chlorella vulgaris Beijerinck, C. sorokiniana Shihira et Krauss, C. lobophora Andreyeva, and Parachlorella kessleri (Fott et Nováková) Krienitz et al. have glucosamine as the main constituent of their rigid cell wall. Recent phylogenetic analyses have showed that the Chlorellaceae divided into two sister groups: the Chlorella-clade and the Parachlorella-clade. We compared the cell wall structure and synthesis of the daughter cell wall in the four species by electron microscopy using rapid freezing and freeze substitution methods. The cell wall of C. vulgaris, C. sorokiniana, and C. lobophora consisted of an electron-dense thin layer with an average thickness of 17–20, 22, and 19 nm, respectively. In these three species, daughter cell wall synthesis occurred on the outer surface of the plasma membrane in the early cell-growth phase. The cell wall of P. kessleri, however, was electron-transparent and 54–59 nm in thickness. Ruthenium red staining of P. kessleri indicated that ruthenium-red-specific polysaccharides accumulated over the outer surface of the plasma membrane. Immunoelectron microscopic observation with an anti--1, 3-glucan antibody and staining with wheat germ agglutinin (WGA) indicated that the cell wall contained -1, 3-glucan and WGA specific N-acetyl--D-glucosamine. In P. kessleri, daughter cell wall synthesis began after successive protoplast division. The daughter cell wall synthesis during autosporulation in the four species of Chlorellaceae can be classified into two types—the early and the late types.  相似文献   

17.
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.  相似文献   

18.
川柿(Diospyros sutchuensis)为极小种群和国家重点保护野生植物,分布范围狭窄,种群数量极少。目前,川柿基因组信息缺乏,在柿属(Diospyros)中的系统亲缘关系不明确。该研究通过Illumina平台对川柿叶绿体基因组进行测序,应用Getorganellev1.7.3.4和PGA软件对基因组进行组装和注释,使用DnaSP6.12.03软件进行多序列对比分析,并使用REPuter、Tandem Reapeats Finder和MISA软件进行重复序列分析,使用CodonW1.4和EasyCodemL软件分别进行密码子偏好性和选择压力分析。同时,基于4个不同的叶绿体基因组序列数据集,使用IQtree软件分析川柿与11个柿属物种的系统发育关系。结果表明:(1)川柿叶绿体基因组全长157 917 bp,包含1对26 111 bp的反向重复区、大单拷贝区(87 303 bp)和小单拷贝区(18 392 bp),GC碱基含量为37.4%。(2)川柿叶绿体基因组共注释到113个基因,包括79个蛋白编码基因、30个tRNA基因和4个rRNA基因; 共检测到49个长重复序列、27个串联重复序列和34个简单重复序列; 蛋白编码基因中高频密码子31个,多数密码子末位碱基为A或U,编码亮氨酸的密码子使用最多; 基因组编码区比非编码区更为保守,10个高变热点区域可作为潜在的分子标记; 蛋白编码基因中有8个基因(ndhBndhGndhIrbcLrpoBpetBpetDrps12)受到正选择压力。(3)系统发育分析显示,川柿与老鸦柿(D. rhombifolia)和乌柿(D. cathayensis)亲缘关系最为密切,它们与海南柿(D. hainanensis)共同形成一个单系分支。该研究结果既为川柿及柿属种质资源鉴定、遗传多样性保护以及种群恢复等提供了叶绿体基因组资源,也为阐明川柿的系统进化提供了重要的分子信息。  相似文献   

19.
蔓赤车(Pellionia scabra)属于荨麻科赤车属,是一种具有高营养价值的优质野菜。本研究以蔓赤车为材料,基于高通量技术方法完成叶绿体基因组测序、组装注释、结构解析及构建系统发育树,以此深入研究蔓赤车叶绿体基因组特征。结果表明,蔓赤车叶绿体基因组大小为153220 bp,GC含量为36.4%,属于典型的四分体结构。共注释到130个基因,其中85个蛋白编码基因,37个转运RNA基因,8个核糖体RNA基因;其中,有15个基因包含1个内含子,2个基因包含2个内含子,rps12存在反式剪接情况。蔓赤车叶绿体基因组可分为光合作用(43个)、自我复制(64个)、其他编码蛋白(7个)以及未知功能(4个)4大类基因。蔓赤车叶绿体基因组共检测出51073个密码子,其中编码亮氨酸(Leu)的密码子占比最大,密码子偏向使用A和U两种碱基。检测到72个简单重复序列位点,其中有58个单核苷酸、12个二核苷酸、1个三核苷酸和1个四核苷酸4种不同类型的简单重复序列(simple sequence repeats,SSRs)。蔓赤车IRb/SSC边界存在ycf1基因扩张现象。系统进化树显示,蔓赤车(Pellionia scabra OL800583)与庐山楼梯草(Elatostema stewardii MZ292972)、盘托楼梯草(Elatostema dissectum MK227819)、光叶楼梯草(Elatostema laevissimum var.laevissimum MN189961)亲缘关系最密切。基于蔓赤车叶绿体基因组的研究,旨在为蔓赤车物种鉴定、遗传进化及基因组学研究奠定理论基础。  相似文献   

20.
The trnS/psbC region of chloroplast DNA (cpDNA) was sequenced for 18 Elymus polyploid species, Hordelymus europaeus and their putative diploid ancestors. The objective was to determine the maternal origin and evolutionary relationships of these polyploid taxa. Phylogenetic analysis showed that Elymus and Pseudoroegneria species formed a highly supported monophyletic group (100 % bootstrap values), suggesting that Pseudoroegneria is the maternal genome donor to polyploid Elymus species studied here. The phylogenetic tree based on cpDNA sequence data indicates that E. submuticus contains a St-genome. Taking into consideration of our previously published RPB2 data, we can conclude that hexaploid E. submuticus contains at least one copy of St and Y genomes. Our Neighor-joining analysis of cpDNA data put Psathyrostachys juncea, Hordeum bogdanii and Hordelymus europaeus into one group, suggesting a close relationship among them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号