首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Murine peritoneal macrophages (M phi S) elicited by a single injection of zymosan A showed a higher responsiveness to the wheat germ agglutinin (WGA)-mediated triggering for H2O2 release than M phi S activated by double injections of the agent. On the contrary, the response to phorbol myristate acetate(PMA)-mediated triggering was higher in the latter M phi S than in the case of the former M phi S. Furthermore, PMA-triggered M phi H2O2 release was found to be inhibited by sarcoma 180 tumor cell-derived proteinaceous factor in a much more marked fashion than the WGA-triggered H2O2 release. These results indicate some significant differences between the cellular mechanisms of the WGA- and PMA-triggering for M phi oxidative burst. On the other hand, microfilament-inhibitors (cytochalasins B and E) and serine protease-inhibitors (tosyl-L-lysine-chloromethyl ketone and tosylamido-2-phenylethyl-chloromethyl ketone), but not microtubule-disrupting agents (colchicine, vinblastine, and vincristine), suppressed both the WGA- and PMA-triggerings for M phi H2O2 release to a similar degree, thereby indicating that the WGA- and PMA-triggerings for M phi oxidative burst have a common process which is dependent on microfilament and serine protease functions. In relation to this, the WGA- and PMA-triggerings for M phi spreading were also depressed by microfilament- and serine protease-inhibitors but not by microtubule-inhibitors, indicating a participation of common membrane functions in the signal transduction in cases of M phi oxidative burst, and cell spreading induced by the WGA- as well as PMA-triggering.  相似文献   

3.
A high molecular weight proteinaceous factor in the cell extract of sarcoma 180 (S-180) was found to inhibit phorbol myristate acetate (PMA)-triggering of macrophage H2O2 release. This factor (S-180 factor) was stable at 56 C for 1 hr and resistant to ultraviolet-irradiation. The S-180 factor inhibited the specific binding of PMA to macrophages and this was accompanied by a parallel reduction of PMA-triggered H2O2 release. S-180 factor preferentially depressed macrophage H2O2 release in response to phorbol diesters including PMA, 4 beta-phorbol 12 13 beta,13 alpha-diacetate, 4 beta-phorbol 12 beta,13 alpha-didecanoate, 4 beta-phorbol 12 beta,13 alpha-dibenzoate, and 4-omicron-methyl-PMA rather than the H2O2 release triggered by wheat germ agglutinin or by phagocytosis of latex particles. The S-180 factor failed to affect the PMA-elicited macrophage cell spreading and macrophage phagocytic activity against latex beads with or without PMA-mediated stimulation. A similar inhibitory factor was found in the extracts of some other murine tumor cells (Ehrlich carcinoma and thymic leukemia) and normal cells (liver, spleen, and peritoneal exudate cells).  相似文献   

4.
The requirements of a cloned macrophage-like cell line, J774.16, for oxygen metabolism, and the nature of the defect in oxidative metabolism in a variant clone derived from it, J774.C3C, were studied. Upon stimulation with phorbol myristate acetate (PMA), the parental clone produced approximately 1 nmol O2-/min/10(6) cells, whereas the variant clone produced no detectable O2- under the same conditions. Sustained O2- production by J774.16 was totally dependent on extracellular glucose; in glucose-free medium, the cells initiated O2- production but could not sustain it. When cells were stimulated with PMA, glucose-C-1 oxidation of J774.16 cells increased 20-fold while that of J774.C3C remained at resting levels. O2- production in J774.16 cells was inhibited by some agents known to block mitochondrial electron transport before coenzyme Q, such as rotenone and tetrathiafulvalene, whereas antimycin A enhanced O2- production. A dissociation between O2- production and glucose-C-1 oxidation was observed when J774.16 was treated with certain metabolic inhibitors. Quinacrine, 2,4-dinitrophenol, chlorpromazine, and trifluoperazine inhibited O2- production completely under conditions in which glucose-C-1 oxidation was reduced only by 30%. Rotenone inhibited O2- production with no effect on glucose-C-1 oxidation whereas antimycin A augmented O2- production 50% but inhibited glucose oxidation by 20%. Glucose transport studies, with 2-deoxy-D-glucose, showed that the Km for glucose transport of both clones was about 1 mM, indicating that cells could effectively transport glucose even at low concentrations. The Vmax for glucose transport in both J774.16 and variant J774.C3C cells doubled after PMA stimulation, indicating that the variant was effectively stimulated by PMA, even though O2- was not produced. Similarly, PMA induced protein phosphorylation in both clones. No differences between clones J774.16 and J774.C3C in hexokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase, or glutathione peroxidase activities could be found. When dithionite-reduced and -oxidized difference spectra of plasma membranes of these clones were compared, comparable levels of b-type cytochrome were found in both clones. However, CO difference spectra indicated that CO was bound to a b-type cytochrome (presumed to be b-245) in clone J774.16 but not in J774.C3C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The macrophage tumor cell line J774.1 replaced the function of normal macrophages in the induction of polyclonal killer T cells with 2-mercaptoethanol. J774.1 does not normally release soluble factor(s) which we have shown to be responsible for the differentiation of T cells to killer T cells. However, stimulation of J774.1 with LPS induced soluble factor(s) for T cell activation. An optimum concentration of LPS for the production of soluble factor(s) was 1 to 10 microgram/ml, which completely inhibited growth of the tumor cells. The production of soluble factor(s) was observed within 6 hr after LPS stimulation and reached its maximum level at 24 hr. Incubation of the cell line with 8Br-cyclic AMP and theophylline induced soluble factor(s), suggesting that LPS stimulation induced an increase in intracellular cyclic AMP which leads to the synthesis of soluble factor(s).  相似文献   

6.
The stimulation of the human neutrophil NADPH-oxidase is initiated by a variety of agonists, which appear to utilize more than one activation pathway. We have discerned that opsonized zymosan (OZ) stimulates O2- release by a mechanism distinct from that of phorbol myristate acetate (PMA). PMA differs from OZ stimulation in its susceptibility to H-7 (a protein kinase inhibitor) inhibition of O2- release and the lack of PMA-initiated release of radiolabeled arachidonic acid ([3H]AA) from prelabeled cells. That AA release was linked to O2- generation in OZ-stimulated cells was suggested by the finding that mepacrine, a phospholipase inhibitor, exhibits parallel dose response inhibition for both O2- generation and [3H]AA release, whereas mepacrine did not significantly inhibit the O2- generation induced by PMA. The specific involvement of phospholipase A2 (PLA2) in the release of AA was indicated by the lack of release of [3H]oleate, which is not released by PLA2 in intact cells; [3H]AA released from phosphatidylinositol and phosphatidylcholine and not accompanied by the formation of [3H]-arachidonyl phosphatidic acid, thus eliminating the involvement of phospholipase C; and the inhibition of [3H]AA release by p-bromophenacyl bromide, a specific PLA2 inhibitor. The reduction of O2- formation by inhibitors of AA metabolism (BW755C, acetylsalicylic acid, and indomethacin) further supports a linkage between AA release and O2- generation. That [3H]AA release, like O2- generation, in OZ-stimulated cells was calcium dependent further differentiates OZ from calcium-independent PMA activation. These studies in toto suggest that OZ stimulation of the NADPH-oxidase differs from PMA, in that the particulate stimulus is PLA2 mediated and independent of protein kinase C.  相似文献   

7.
Early biochemical changes associated with adjuvant stimulation of macrophage protein synthesis were studied using two murine macrophage cell lines, PU5-1.8 and J774.1. An induction of ornithine decarboxylase (ODC) was detected 2 hours after exposure of PU5-1.8 and J774.1 cells to two crude immunoadjuvants, BCG cell walls (BCGcw) and lipopolysaccharides from Escherichia coli (LPS). The chemically defined immunoadjuvant glycopeptide, N-acetyl-muramyl-L-alanyl-D-isoglutamine (MDPL) also promoted an increase in ODC activity at 2 hours that was maximal after 4 hours, while little or no effect was observed with the D-alanyl analog (MDPD) that is devoid of adjuvant activity. The increase in ODC activity promoted by BCGcw in PU5-1.8 and J774.1 cells returned toward control levels by 6 to 8 hours. BCGcw also stimulated RNA and protein synthesis which remained elevated for at least 24 hours and was associated with a decrease in DNA synthesis and cell proliferation. ODC induction by BCGcw and MDPL was enhanced by the addition of PGE2 in both cell lines. Indomethacin slightly depressed the magnitude of ODC stimulation by BCGcw in J774.1 cells but failed to alter the response of PU5-1.8 cells. Additional observations indicated that the induction of ODC by BCGcw in both cell lines was preceded by an activation of cyclic AMP-dependent protein kinase. These observations suggest that a cyclic AMP-mediated induction of ODC may be an early biochemical marker of adjuvant stimulation in macrophages.  相似文献   

8.
The murine Ly-6A.2 and Ly-6E.1 antigens, which can transduce triggering signals in T cells, have been shown to become highly expressed after mitogenic stimulation. It has recently been found that enhanced expression of Ly-6A/E antigens is also induced by interferon-gamma (IFN-gamma) in resting T cells. Here, the possibility is investigated that Ly-6A/E induction on activated T cells may be due to the IFN-gamma known to be secreted by these cells. A potent neutralizing anti-IFN-gamma monoclonal antibody (mAb) (H-22.10) was used. This mAb was found to abrogate the augmentation of Ly-6A/E antigens produced in resting T cells by supernatants from T cells stimulated with concanavalin A. When added directly into cultures of T cells stimulated with concanavalin A or by the combination of ionomycin with the protein kinase C activator phorbol myristate acetate (PMA), the H-22.10 mAb inhibited Ly-6A/E enhancement without affecting the blastogenesis or the emergence of interleukin 2 receptors and transferrin receptors. Such a selective effect of the anti-IFN-gamma mAb indicated that IFN-gamma is involved in the up-regulation of Ly-6A/E antigens during T cell activation. In determining whether other activation signals, in addition to IFN-gamma receptor occupancy, may contribute to Ly-6A/E enhancement, it was found that suboptimal stimulation of BALB/c T cells provided by a 3-hr pulse with ionomycin plus PMA or by culture with PMA alone potentiated by about twofold the increase of Ly-6E.1 induced by exogenous IFN-gamma. Therefore, Ly-6A/E augmentation in activated T cells reflects primarily an action of endogenous IFN-gamma that is amplified (in BALB/c mice) by a protein kinase C-dependent step.  相似文献   

9.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

10.
Lipopolysaccharide (LPS)-resistant mutants which did not respond to LPS were isolated from a macrophage-like mouse cell line, J774.1. Unlike the parental J774.1 cells, these mutants grew even in LPS added medium as well as in normal growth medium without any morphological changes. Assay of 125I-LPS binding to the cell monolayers revealed that one of these LPS-resistant mutants (LR-9) was strikingly defective in LPS-binding activity. Scatchard plot showed that LR-9 cells lacked the high affinity binding sites which were present in J774.1. The high affinity binding was inhibited by addition of excess unlabeled LPS, lipid A, lipid IVA (tetraacyl-beta(1'-6)-linked D-glucosamine disaccharide-1,4'-bisphosphate), and lipid X (2,3-diacylglucosamine 1-phosphate) and sensitive to proteinase K. LPS enhanced O2- generation and the release of arachidonic acid in J774.1 cells but not in LR-9 cells. Other stimulants such as zymosan and 12-O-tetradecanoylphorbol 13-acetate, however, induced the release of arachidonic acid in LR-9 cells as well as in J774.1 cells. LPS-photocross-linked assay allowed the identification of 65- and 55-kDa LPS-binding proteins in the membrane fraction of J774.1 cells. Both of the bands were not detectable in that of LR-9 cells and disappeared by competing with unlabeled LPS or lipid X. These results show that one or both of the two LPS-binding proteins might relate to the specific membrane receptor for LPS.  相似文献   

11.
IFN-gamma plays an important role in host defense against microbial disease. Here, we studied the role of IFN-gamma in lethal and nonlethal murine malaria. Administration of recombinant murine IFN-gamma resulted in a dose-dependent protection of SW, BALB/cByJ, and CBA/J mice from the lethal variant of Plasmodium yoelii 17x (PyL) but had little effect on the course of the nonlethal variant of this parasite (PyNL). Administration of recombinant IFN-gamma also resulted in the activation of peritoneal macrophages for increased phagocytosis of malaria-infected erythrocytes and release of H2O2, as measured in vitro. The ability of spleen cells from infected mice to produce endogenous IFN-gamma and release H2O2 during the course of malaria was also studied. In BALB/cByJ mice, which are relatively susceptible to PyL and PyNL, there was an initial burst of IFN-gamma only in response to PyNL whereas in CBA/J mice, which are relatively resistant to these parasites, there was an initial burst of IFN-gamma in response to both PyL and PyNL. The kinetics of H2O2 release corresponded to that of IFN-gamma. In all infections, levels of IFN-gamma declined as parasitemia increased; however, nonlethal infections were characterized by a recovery of both IFN-gamma activity and H2O2 release as parasitemia declined. These data suggest that IFN-gamma may play an important role in modulating the course of malaria infections by activating macrophages for both intracellular and extracellular parasite destruction.  相似文献   

12.
13.
Activated T cells are known to stimulate macrophage oxidative metabolism and antimicrobial activity through release of interferon-gamma (IFN-gamma). In contrast, the role of nonactivated T cells in regulating macrophage effector functions is less well defined. We have previously reported that a low molecular weight soluble factor derived from resident (nonactivated) thymocytes enhances macrophage receptor-mediated phagocytosis. In the present study, we examined the capacity of resident murine thymocytes to stimulate the respiratory burst and microbicidal activity of peritoneal macrophages. Macrophages cultured for 1-2 days with cell-free thymocyte supernatant (TS) released two to three times more H2O2 in response to PMA or opsonized zymosan than did control macrophages. The H2O2-stimulating factor in TS was distinguished from IFN-gamma by its heat stability (100 degrees C, 20 min), approximate MW of 2400 Da (gel filtration high-pressure liquid chromatography), and absence of interferon activity in both antiviral and enzyme-linked immunosorbent assays. TS-treated macrophages, however, did not exhibit a greater capacity to kill or inhibit the intracellular growth of Toxoplasma gondii, indicating that the thymocyte factor did not fully activate macrophage microbicidal mechanisms. These data suggest that thymocytes can increase the respiratory burst capacity of macrophages in the absence of antigen-specific immune responses.  相似文献   

14.
In order to study the signal transduction mechanism of human endothelial cells (EC), the regulation of superoxide anion (O2-)release in EC has been investigated using the calcium ionophore A23187 and phorbol myristate acetate (PMA), a potential activator of the Ca2+ activated, phospholipid-dependent protein kinase, designated "protein kinase C." PMA enhanced O2- release from EC, and this enhancement occurred regardless of the presence or absence of extracellular Ca2+. A similar increase was produced by A23187; omission of extracellular Ca2+ prevented this increase. Simultaneous stimulation with PMA and A23187 produced a large increase in O2- release at submaximal concentrations of these agents, which, when added separately, caused minimal effects. These findings indicate that the activation of protein kinase C and mobilization of Ca2+ evoked by PMA and A23187 respectively are synergistically effective for eliciting a full physiological response of EC in the generation and release of O2-.  相似文献   

15.
Oral administration of an enzymatically synthesized α-1,4:1,6-glycogen (ESG) at a dose of 50 μg/ml significantly prolonged the survival time of Meth A tumor-bearing mice. ESG also significantly stimulated macrophage-like cells (J774.1), leading to augmented production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). The weight-average degree of polymerization (DPw) and the ratio of branch linkage (BL) of ESG were 149,000 and 8.1% respectively. β-Amylase-treated ESG, however, lost J774.1-activating activity although inhibited subcutaneous growth of Meth A tumor cells admixed with it. Its DPw and BL changed to 126,000 and 20% respectively. Partially degraded amylopectin [(AP), DPw: 110,000, BL; 5.1] was also effective at stimulating J774.1, but its activity was lower than that of ESG. Other α-glucans [cycloamylose (CA), enzymatically synthesized amylose (ESA), highly branched cyclic dextrin (HBCD), and β-amylase-treated HBCD], of which DPw was lower than that of ESG, showed no J774.1-activating activity and weaker anti-tumor activity.  相似文献   

16.
Bradykinin (BK) and phorbol 12-myristate 13-acetate (PMA) both stimulate the hydrolysis of phosphatidylcholine (PC) in human fibroblasts, resulting in the formation of phosphatidic acid (PA) and diacylglycerol (DG) (Van Blitterswijk, W.J., Hilkmann, H., de Widt, J., and Van der Bend, R.L. (1990) J. Biol. Chem. 266, 10337-10343). Stimulation with BK resulted in the rapid and synchronous formation of [3H]choline and [3H]myristoyl-PA from the correspondingly prelabeled PC, indicative of phospholipase D (PLD) activity. In the presence of ethanol or n-butanol, transphosphatidylation by PLD resulted in the formation of [3H]phosphatidylethanol or - butanol, respectively, at the cost of PA and DG formation. This suggests that PC-derived DG is generated via a PLD/PA phosphohydrolase pathway. A more pronounced but delayed formation of these products was observed by PMA stimulation. The Ca2+ ionophore ionomycin also activated PLD and accelerated (synergized) the response to PMA. Both [3H] choline and [3H]phosphocholine were released into the extracellular medium in a time- and stimulus-dependent fashion, without apparent changes in the high intracellular levels of [3H]phosphocholine. The protein kinase C (PKC) inhibitors staurosporin and 1-O-hexadecyl-2-O-methylglycerol inhibited BK- and PMA-induced activation of PLD. Down-regulation of PKC by long-term pretreatment of cells with phorbol ester caused a dramatic drop in background [3H]choline levels, while subsequent stimulation with BK, ionomycin, or PMA failed to increase these levels and failed to induce transphosphatidylation. From these results we conclude that PLD activation is entirely mediated by (downstream of) PKC. Unexpectedly, however, BK stimulation of these PKC-depleted cells caused a marked generation of DG from PC within 15 s, which was not seen in BK-stimulated control cells, suggesting PC breakdown by a phospholipase C (PLCc). We conclude that cells stimulated with BK generate DG via both the PLCc and the PLD/PA hydrolase pathway, whereas PMA stimulates mainly the latter pathway. BK stimulation of normal cells leads to activation of PKC and, by consequence, to attenuation of the level of PLCc-generated DG and to stimulation of the PLD pathway, whereas the reverse occurs in PKC-down-regulated cells.  相似文献   

17.
Both interferon-gamma (IFN-gamma) and 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3) induce changes in the human monocytic cell line U937 that may reflect cellular differentiation. The effects of recombinant IFN-gamma and 1 alpha,25(OH)2D3 on U937 cells with regard to the release of superoxide anion (O2-), prostaglandin E2 (PGE2), and mononuclear cell factor (MCF) after stimulation with phorbol myristate acetate (PMA) were examined. PMA did not induce O2- production in untreated cells. A 3-day preincubation with IFN-gamma or 1 alpha,25(OH)2D3 resulted in a 5- to 10-fold increase in PMA-stimulated production of O2- as compared to cells preincubated in medium alone. The response was related to IFN-gamma and 1 alpha,25(OH)2D3 concentrations. In contrast, the PMA-induced production of PGE2 and MCF does not require preincubation with either IFN-gamma or 1 alpha,25(OH)2D3. These results suggest that O2- production and cytokine production (i.e., PGE2 and MCF) are modulated by different signals related to maturation processes.  相似文献   

18.
Oral administration of an enzymatically synthesized alpha-1,4:1,6-glycogen (ESG) at a dose of 50 mug/ml significantly prolonged the survival time of Meth A tumor-bearing mice. ESG also significantly stimulated macrophage-like cells (J774.1), leading to augmented production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha). The weight-average degree of polymerization (DPw) and the ratio of branch linkage (BL) of ESG were 149,000 and 8.1% respectively. beta-Amylase-treated ESG, however, lost J774.1-activating activity although inhibited subcutaneous growth of Meth A tumor cells admixed with it. Its DPw and BL changed to 126,000 and 20% respectively. Partially degraded amylopectin [(AP), DPw: 110,000, BL; 5.1] was also effective at stimulating J774.1, but its activity was lower than that of ESG. Other alpha-glucans [cycloamylose (CA), enzymatically synthesized amylose (ESA), highly branched cyclic dextrin (HBCD), and beta-amylase-treated HBCD], of which DPw was lower than that of ESG, showed no J774.1-activating activity and weaker anti-tumor activity.  相似文献   

19.
Under various pathological conditions, including infection, malignancy, and autoimmune diseases, tissues are incessantly exposed to reactive oxygen species produced by infiltrating inflammatory cells. We show augmentation of motility associated with morphological changes of human squamous carcinoma SASH1 cells, human peripheral monocytes (hPMs), and murine macrophage-like cell line J774.1 by superoxide stimulation. We also disclose that motility of hPMs and J774.1 induced by a chemotactic peptide (N-formyl-methionyl-leucyl-phenylalanine [fMLP]) was inhibited by superoxide dismutase or N-acetylcystein, indicating stimulation of motility by superoxide generated by fMLP stimulation. In these cells, protein kinase C (PKC) zeta was activated to phosphorylate RhoGDI-1, which liberated RhoGTPases, leading to their activation. These events were inhibited by dominant-negative PKCzeta in SASH1 cells, myristoylated PKCzeta peptides in hPMs and J774.1, or a specific inhibitor of RhoGTPase in SASH1, hPMs, and J774.1. These results suggest a new approach for manipulation of inflammation as well as tumor cell invasion by targeting this novel signaling pathway.  相似文献   

20.
Neutrophils stimulated with 4 beta-phorbol 12-myristate 13-acetate (PMA) release large quantities of superoxide (O2-) and exhibit phosphorylation of two proteins with molecular masses of 47(p47) and 49 kDa (p49). Addition of inhibitors of protein kinases (e.g. 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7)) to these cells after stimulation with PMA results in the loss of 32P from these proteins and a rapid cessation of O2- release (e.g. Heyworth, P. G., and Badwey, J. A. (1990) Biochim. Biophys. Acta 1052, 299-305). In this paper we report that antagonists of type 1 and 2A protein phosphatases (okadaic acid, calyculin A) prevented both the loss of 32P from p47 and the termination of O2- release in stimulated neutrophils treated with H-7. Calyculin A also caused a remarkable hyperphosphorylation of a number of proteins in neutrophils and increased O2- release from these cells in response to a suboptimal amount of PMA. Enzymes present in both the soluble and particulate fractions of neutrophils catalyzed the near complete dephosphorylation of 32P-labeled p47 and p49 bound to Immobilon-P membranes. Dephosphorylation of these blotted phosphoproteins occurred at physiological rates and was inhibited by okadaic acid and calyculin A. These data strongly suggest that p47 undergoes a continual cycle of phosphorylation and dephosphorylation throughout the period of O2- release when PMA is the stimulus. Moreover, we show that antagonists of type 1 and 2A protein phosphatases block dephosphorylation of p47 both in vivo and in vitro, indicating that these enzymes may modulate O2- release under certain circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号