首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.  相似文献   

2.
The bacterial endosymbionts (Buchnera) from the aphids Rhopalosiphum padi, R. maidis, Schizaphis graminum, and Acyrthosiphon pisum contain the genes for anthranilate synthase (trpEG) on plasmids made up of one or more 3.6-kb units. Anthranilate synthase is the first as well as the rate-limiting enzyme in the tryptophan biosynthetic pathway. The amplification of trpEG on plasmids may result in an increase of enzyme protein and overproduction of this essential amino acid, which is required by the aphid host. The nucleotide sequence of trpEG from endosymbionts of different species of aphids is highly conserved, as is an approximately 500-bp upstream DNA segment which has the characteristics of an origin of replication. Phylogenetic analyses were performed using trpE and trpG from the endosymbionts of these four aphids as well as from the endosymbiont of Schlechtendalia chinensis, in which trpEG occurs on the chromosome. The resulting phylogeny was congruent with trees derived from sequences of two chromosome-located bacterial genes (part of trpB and 16S ribosomal DNA). In turn, trees obtained from plasmid-borne and bacterial chromosome-borne sequences were congruent with the tree resulting from phylogenetic analysis of three aphid mitochondrial regions (portions of the small and large ribosomal DNA subunits, as well as cytochrome oxidase II). Congruence of trees based on genes from host mitochondria and from bacteria adds to previous support for exclusively vertical transmission of the endosymbionts within aphid lineages. Congruence with trees based on plasmid-borne genes supports the origin of the plasmid-borne trpEG from the chromosomal genes of the same lineage and the absence of subsequent plasmid exchange among endosymbionts of different species of aphids. Received: 22 August 1995 / Accepted: 6 September 1995  相似文献   

3.
A molecular phylogenetic analysis of elongation factor Tu (EF-Tu) proteins from plastids was performed in an attempt to identify the origin of chlorarachniophyte plastids, which are considered to have evolved from the endosymbiont of a photosynthetic eukaryote. Partial sequences of the genes for plastid EF-Tu proteins (1,080–1,089 bp) were determined for three algae that contain chlorophyll b, namely, Gymnochlora stellata (Chlorarachniophyceae), Bryopsis maxima (Ulvophyceae), and Pyramimonas disomata (Prasinophyceae). The deduced amino acid sequences were used to construct phylogenetic trees of the plastid and bacterial EF-Tu proteins by the maximum likelihood, the maximum parsimony, and the neighbor joining methods. The trees obtained in the present analysis suggest that all plastids that contain chlorophyll b are monophyletic and that the chlorarachniophyte plastids are closely related to those of the Ulvophyceae. The phylogenetic trees also suggest that euglenophyte plastids are closely related to prasinophycean plastids. The results indicate that the chlorarachniophyte plastids evolved from a green algal endosymbiont that was closely related to the Ulvophyceae and that at least two secondary endosymbiotic events have occurred in the lineage of algae with plastids that contain chlorophyll b. Received: 10 March 1997 / Accepted: 28 July 1997  相似文献   

4.
Nucleotide sequences of the genes coding for the M and cytochrome subunits of the photosynthetic reaction center of Rhodocyclus gelatinosus, a purple bacterium in the subdivision, were determined. The deduced amino acid sequences of these proteins were compared with those of other photosynthetic bacteria. Based on the homology of these two photosynthetic proteins, Rc. gelatinosus was placed in the subdivision of purple bacteria, which disagrees with the phylogenetic trees based on 16S rRNA and soluble cytochrome c 2. Horizontal transfer of the genes which code for the photosynthetic apparatus in purple bacteria can be postulated if the phylogenetic trees based on 16S rRNA and soluble cytochrome c 2 reflect the real history of purple bacteria.Abbreviations LH I light harvesting complex I - RC reaction center  相似文献   

5.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

6.
The genes encoding for heat shock protein 40 (Hsp40 or DnaJ) homologs were cloned and sequenced from the archaebacterium Halobacterium cutirubrum and the eubacterium Deinococcus proteolyticus to add to sequences from the gene banks. These genes were identified downstream of the Hsp70 (or DnaK) genes in genomic fragments spanning this region and, as in other prokaryotic species, Hsp70-Hsp40 genes are likely part of the same operon. The Hsp40 homolog from D. proteolyticus was found to be lacking a central 204 base pair region present in H. cutirubrum that encodes for the four cysteine-rich domains of the repeat consensus sequence CxxCxGxG (where x is any amino acid), present in most Hsp40 homologs. The available sequences from various archaebacteria, eubacteria, and eukaryotes show that the same deletion is also present in the homologs from Thermus aquaticus and two cyanobacteria, but in no other species tested. This unique deletion and the clustering of homologs from the Deinococcus–Thermus group and cyanobacterial species in the Hsp40 phylogenetic trees suggest a close evolutionary relationship between these groups as was also shown recently for Hsp70 sequences (R.S. Gupta et al., J Bacteriol 179:345–357, 1997). Sequence comparisons indicate that the Hsp40 homologs are not as conserved as the Hsp70 sequences. Phylogenetic analysis provides no reliable information concerning evolutionary relationship between prokaryotes and eukaryotes and their usefulness in this regard is limited. However, in phylogenetic trees based on Hsp40 sequences, the two archaebacterial homologs showed a polyphyletic branching within Gram-positive bacteria, similar to that seen with Hsp70 sequences. Received: 30 January 1997 / Accepted: 22 March 1997  相似文献   

7.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

8.
Wolbachia are obligatory intracellular and maternally inherited bacteria, known to infect many species of arthropod. In this study, we discovered a bacteriophage-like genetic element in Wolbachia, which was tentatively named bacteriophage WO. The phylogenetic tree based on phage WO genes of several Wolbachia strains was not congruent with that based on chromosomal genes of the same strains, suggesting that phage WO was active and horizontally transmitted among various Wolbachia strains. All the strains of Wolbachia used in this study were infected with phage WO. Although the phage genome contained genes of diverse origins, the average G+C content and codon usage of these genes were quite similar to those of a chromosomal gene of Wolbachia. These results raised the possibility that phage WO has been associated with Wolbachia for a very long time, conferring some benefit to its hosts. The evolution and possible roles of phage WO in various reproductive alterations of insects caused by Wolbachia are discussed. Received: 28 January 2000 / Accepted: 3 August 2000  相似文献   

9.
10.
This study provides a phylogenetic/comparative approach to deciphering the processes underlying the evolution of plastid rRNA genes in genomes under relaxed functional constraints. Nonphotosynthetic green algal taxa that belong to two distinct classes, Chlorophyceae (Polytoma) and Trebouxiophyceae (Prototheca), were investigated. Similar to the situation described previously for plastid 16S rRNA genes in nonphotosynthetic land plants, nucleotide substitution levels, extent of structural variations, and percentage AT values are increased in nonphotosynthetic green algae compared to their closest photosynthetic relatives. However, the mutational processes appear to be different in many respects. First, with the increase in AT content, more transversions are noted in Polytoma and holoparasite angiosperms, while more transitions characterize the evolution of the 16S rDNA sequences in Prototheca. Second, although structural variations do accumulate in both Polytoma and Prototheca (as well as holoparasitic plastid 16S rRNAs), insertions as large as 1.6 kb characterize the plastid 16S rRNA genes in the former, whereas significantly smaller indels (not exceeding 24 bp) seem to be more prevalent in the latter group. The differences in evolutionary rates and patterns within and between lineages might be due to mutations in replication/repair-related genes; slipped-strand mispairing is likely the mechanism responsible for the expansion of insertions in Polytoma plastid 16S rRNA genes. Received: 29 December 2000 / Accepted: 18 May 2001  相似文献   

11.
Pseudomonas syringae are differentiated into approximately 50 pathovars with different plant pathogenicities and host specificities. To understand its pathogenicity differentiation and the evolutionary mechanisms of pathogenicity-related genes, phylogenetic analyses were conducted using 56 strains belonging to 19 pathovars. gyrB and rpoD were adopted as the index genes to determine the course of bacterial genome evolution, and hrpL and hrpS were selected as the representatives of the pathogenicity-related genes located on the genome (chromosome). Based on these data, NJ, MP, and ML phylogenetic trees were constructed, and thus 3 trees for each gene and 12 gene trees in total were obtained, all of which showed three distinct monophyletic groups: Groups 1, 2 and 3. The observation that the same set of OTUs constitute each group in all four genes suggests that these genes had not experienced any intergroup horizontal gene transfer within P. syringae but have been stable on and evolved along with the P. syringae genome. These four index genes were then compared with another pathogenicity-related gene, argK (the phaseolotoxin-resistant ornithine carbamoyltransferase gene, which exists within the argK–tox gene cluster). All 13 strains of pv. phaseolicola and pv. actinidiae used had been confirmed to produce phaseolotoxin and to have argK, whose sequences were completely identical, without a single synonymous substitution among the strains used (Sawada et al. 1997a). On the other hand, argK were not present on the genomes of the other 43 strains used other than pv. actinidiae and pv. phaseolicola. Thus, the productivity of phaseolotoxin and the possession of the argK gene were shown at only two points on the phylogenetic tree: Group 1 (pv. actinidiae) and Group 3 (pv. phaseolicola). A t test between these two pathovars for the synonymous distances of argK and the tandemly combined sequence of the four index genes showed a high significance, suggesting that the argK gene (or argK–tox gene cluster) experienced horizontal gene transfer and expanded its distribution over two pathovars after the pathovars had separated, thus showing a base substitution pattern extremely different from that of the noncluster region of the genome. Received: 18 January 1999 / Accepted: 25 May 1999  相似文献   

12.
The genus Chrysolina consists of specialized phytophagous leaf-beetles (Coleoptera, Chrysomelidae) with feed on several plant families. There is no explicit phylogenetic hypothesis available for this genus, which includes 65 subgenera and more than 400 species with a wide distribution. We obtained 839-bp sequence data from the 16S rDNA and cytochrome oxidase subunit I (COI) mitochondrial genes. Thirty Chrysolina taxa representing eight host–plant affiliations, two species of the closely related genus Oreina, and two outgroups were sampled. These data sets were used separately and combined to obtain the mitochondrial cladogram of the group using maximum-parsimony and maximum-likelihood criteria. The results were compared to current proposals for Chrysolina systematics that are based on morphological, ecological, and karyological data. The trees obtained were in the most part congruent with the proposed ancestral association of Chrysolina to Lamiaceae based on chromosome number in several lineages. A minimum of five host-plant switches from the ancestral state inferred at the family level and two at the subclass level suggests the absence of parallel evolution of beetles and their host plants. Another switch leading to oligophagy at the family level was deduced to have occurred in the lineage of the subgenus Chrysolina s.str. Received: 22 May 1998 / Accepted: 16 September 1998  相似文献   

13.
We report the cDNA sequences for the DMA and DMB family of Mhc genes of the gray short-tailed opossum. Until now DM sequences were available only in eutherian mammals. The marsupial sequences indicate that both members of the family are old and probably diverged from other classical class II families about the time of the radiation of jawed vertebrates some 450 million years ago. We examine the evolutionary rates of equivalent sets of classical and nonclassical genes to check for rate heterogeneity. We find the α-1 domain of the DR genes to be untypically conservative in its evolutionary mode. The DM genes appear to evolve at rates typical of other class II genes, indicating that their placement at the root of class II gene evolutionary trees may be justified. Received: 2 March 1998 / Accepted: 2 June 1998  相似文献   

14.
A New Appraisal of the Prokaryotic Origin of Eukaryotic Phytochromes   总被引:5,自引:0,他引:5  
The evolutionary origin of the phytochromes of eukaryotes is controversial. Three cyanobacterial proteins have been described as ``phytochrome-like' and have been suggested to be potential ancestors of these essential photoreceptors: Cph1 from Synechocystis PCC 6803, showing homology to phytochromes along its entire length and known to attach a chromophore; and PlpA from Synechocystis PCC 6803 and RcaE from Fremyella diplosiphon, both showing homology to phytochromes most strongly only in the C-terminal region and not known to bind a chromophore. We have reexamined the evolution of the photoreceptors using for PCR amplification a highly conserved region encoding the chromophore-binding domain in both Cph1 and phytochromes of plants and have identified genes for phytochrome-like proteins (PLP) in 11 very diverse cyanobacteria. The predicted gene products contain either a Cys, Arg, Ile, or Leu residue at the putative chromophore binding site. In 10 of the strains examined only a single gene was found, but in Calothrix PCC 7601 two genes (cphA and cphB) were identified. Phylogenetic analysis revealed that genes encoding PLP are homologues that share a common ancestor with the phytochromes of eukaryotes and diverged before the latter. In contrast, the putative sensory/regulatory proteins, including PlpA and RcaE, that lack a part of the chromophore lyase domain essential for chromophore attachment on the apophytochrome, are only distantly related to phytochromes. The Ppr protein of the anoxygenic photosynthetic bacterium Rhodospirillum centenum and the bacterial phytochrome-like proteins (BphP) of Deinococcus radiodurans and Pseudomonas aeruginosa fall within the cluster of cyanobacterial phytochromes. Received: 9 December 1999 / Accepted: 10 May 2000  相似文献   

15.
16.
The prokaryotic endosymbionts (Buchnera) of aphids are known to provision their hosts with amino acids that are limiting in the aphid diet. Buchnera from the aphids Schizaphis graminum and Diuraphis noxia have plasmids containing leuABCD, genes that encode enzymes of the leucine biosynthetic pathway, as well as genes encoding proteins probably involved in plasmid replication (repA1 and repA2) and an open reading frame (ORF1) of unknown function. The newly reported plasmids closely resemble a plasmid previously described in Buchnera of the aphid Rhopalosiphum padi [Bracho AM, Martínez-Torres D, Moya A, Latorre A (1995) J Mol Evol 41:67–73]. Nucleotide sequence comparisons indicate conserved regions which may correspond to an origin of replication and two promoters, as well as inverted repeats, one of which resembles a rho-independent terminator. Phylogenetic analyses based on amino acid sequences of leu gene products and ORF1 resulted in trees identical to those obtained from endosymbiont chromosomal genes and the plasmid-borne trpEG. These results are consistent with a single evolutionary origin of the leuABCD-containing plasmid in a common ancestor of Aphididae and the lack of plasmid exchange between endosymbionts of different aphid species. Trees for ORF1 and repA (based on both nucleotides and amino acids) are used to examine the basis for leu plasmid differences between Buchnera of Thelaxes suberi and Aphididae. The most plausible explanation is that a single transfer of the leu genes to an ancestral replicon was followed by rearrangements. The related replicon in Buchnera of Pemphigidae, which lacks leuABCD, appears to represent the ancestral condition, implying that the plasmid location of the leu genes arose after the Pemphigidae diverged from other aphid families. This conclusion parallels previously published observations for the unrelated trpEG plasmid, which is present in Aphididae and absent in Pemphigidae. Recruitment of amino acid biosynthetic genes to plasmids has been ongoing in Buchnera lineages after the infection of aphid hosts. Received: 9 March 1998 / Accepted: 18 May 1998.  相似文献   

17.
The sequence of a cloned Anopheles stephensi gene showed 72% inferred amino acid identity with Drosophila melanogaster Dox-A2 and 93% with its putative ortholog in Anopheles gambiae. Dox-A2 is the reported but herein disputed structural locus for diphenol oxidase A2. Database searches identified Dox-A2 related gene sequences from 15 non-insect species from diverse groups. Phylogenetic trees based on alignments of inferred protein sequences, DNA, and protein motif searches and protein secondary structure predictions produced results consistent with expectations for genes that are orthologous. The only inconsistency was that the C-terminus appears to be more primitive in the yeasts than in plants. In mammals, plants, and yeast these genes have been shown to code for a non-ATPase subunit of the PA700 (19S) regulatory complex of 26S proteasome. The analyses indicated that the insect genes contain no divergent structural features, which taken within an appraisal of all available data, makes the reported alternative function highly improbable. A plausible additional role, in which the 26S proteasome is implicated in regulation of phenol oxidase, would also apply to at least the mammalian genes. No function has yet been reported for the other included sequences. These were from genome projects and included Caenorhabiditus elegans, Arabidopsis thaliana, Fugu rubripes, and Toxoplasma gondii. A consensus of the results predicts a protein containing exceptionally long stretches of helix with a hydrophilic C-terminus. Phosphorylation site motifs were identified at two conserved positions. Possible SRY and GATA-1 binding motifs were found at conserved positions upstream of the mosquito genes. The location of A. stephensi Dox-A2 was determined by in situ hybridization at 34D on chromosome arm 3R. It is in a conserved gene cluster with respect to the other insects. However, the A. stephensi cluster contains a gene showing significant sequence identity to human and pigeon carnitine acetyltransferase genes, therefore showing divergence with the distal end of the D. melanogaster cluster. Received: 3 July 1998 / Accepted: 22 December 1999  相似文献   

18.
The key protein of the signal recognition particle (termed SRP54 for Eucarya and Ffh for Bacteria) and the protein (termed SRα for Eucarya and Ftsy for bacteria) involved in the recognition and binding of the ribosome SRP nascent polypeptide complex are the products of an ancient gene duplication that appears to predate the divergence of all extant taxa. The paralogy of the genes encoding the two proteins (both of which are GTP triphosphatases) is argued by obvious sequence similarities between the N-terminal half of SRP54(Ffh) and the C-terminal half of SRα(Ftsy). This enables a universal phylogeny based on either protein to be rooted using the second protein as an outgroup. Phylogenetic trees inferred by various methods from an alignment (220 amino acid positions) of the shared SRP54(Ffh) and SRα(Ftsy) regions generate two reciprocally rooted universal trees corresponding to the two genes. The root of both trees is firmly positioned between Bacteria and Archaea/Eucarya, thus providing strong support for the notion (Iwabe et al. 1989; Gogarten et al. 1989) that the first bifurcation in the tree of life separated the lineage leading to Bacteria from a common ancestor to Archaea and Eucarya. None of the gene trees inferred from the two paralogues support a paraphyletic Archaea with the crenarchaeota as a sister group to Eucarya. Received: 19 March 1998 / Accepted: 5 June 1998  相似文献   

19.
It has been hypothesized that a large fraction of 24% noncoding DNA in R. prowazekii consists of degraded genes. This hypothesis has been based on the relatively high G+C content of noncoding DNA. However, a comparison with other genomes also having a low overall G+C content shows that this argument would also apply to other bacteria. To test this hypothesis, we study the coding potential in sets of genes, pseudogenes, and intergenic regions. We find that the correlation function and the χ2-measure are clearly indicative of the coding function of genes and pseudogenes. However, both coding potentials make almost no indication of a preexisting reading frame in the remaining 23% of noncoding DNA. We simulate the degradation of genes due to single-nucleotide substitutions and insertions/deletions and quantify the number of mutations required to remove indications of the reading frame. We discuss a reduced selection pressure as another possible origin of this comparatively large fraction of noncoding sequences. Received: 27 December 1999 / Accepted: 5 July 2000  相似文献   

20.
Complete sequences of cytochrome b (1,137 bases) and 12S ribosomal RNA (961 bases) genes in mitochondrial DNA were successfully determined from the woolly mammoth (Mammuthus primigenius), African elephant (Loxodonta africana), and Asian elephant (Elephas maximus). From these sequence data, phylogenetic relationships among three genera were examined. Molecular phylogenetic trees reconstructed by the neighbor-joining and the maximum parsimony methods provided an identical topology both for cytochrome b and 12S rRNA genes. These results support the ``Mammuthus-Loxodonta' clade, which is contrary to some previous morphological reports that Mammuthus is more closely related to Elephas than to Loxodonta. Received: 8 April 1997 / Accepted: 23 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号