首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Cell division is described in the octaflagellate prasinophyte Pyramimonas amylifera Conrad and is compared in related genera. Basal bodies replicate at preprophase and move toward the poles. Cells remain motile throughout division. The nuclear envelope disperses and chromosomes begin to condense at prophase. Pairs of multilayered kinetochores are evident on the chromosomes of the metaphase plate. Spindle microtubules extending from the region of the basal bodies and rhizoplasts attach to the kinetochores or extend from pole to pole. Numerous vesicles and ribosomes have entered the nuclear region and the incipient cleavage furrow invaginates. The chromosomes move toward the poles at anaphase leaving a broad interzonal spindle between the two chromosomal plates. The nuclear envelope reforms first around the chromatin on the side adjacent to the spindle poles and later on the interzonal side. The cleavage furrow progresses into the interzonal spindle at telophase. By late telophase the nucleoli have reformed and the chromosomes have decondensed. The interzonal spindle has not been observed late in telophase. As the cleavage furrow nears completion the cells begin to twist and contort, ultimately separating the two cells.  相似文献   

2.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

3.
Summary The interphase nucleus ofLeishmania adleri has clumps of chromatin associated with the nuclear envelope and a large centrally located nucleolus. Prior to mitosis the basal bodies replicate at the cell anterior. Subsequently, dense plaques appear in the equatorial region of the nucleus at the time of spindle development. Microtubules appear in the nucleus adjacent to the nuclear envelope and embedded in the matrix of the plaques. A central spindle composed of a single bundle of microtubules develops and spans the nucleus. Plaques and nucleolar components laterally associate with the spindle and migrate towards the poles. The central spindle elongates to three to four times its original length separating the forming daughter nuclei and producing an interzonal spindle. A remnant of the interzonal spindle remains attached to each of the daughter nuclei until late into cytokinesis. The kinetoplast does not divide until after the completion of mitosis.  相似文献   

4.
Summary Mitosis and cytokinesis have been studied in the green algaZygnema C. A. Agardh using interference-contrast light and transmission electron microscopy. At prophase, the nucleolus disintegrates and numerous extranuclear microtubules near the nuclear periphery penetrate into the nucleoplasm. When aligned in the equatorial plane of the open metaphase spindle the chromosomes are coated with persistent nucleolar fragments. At anaphase, vacuoles intrude into the interzonal spindle region and seemingly contribute to the anaphase movement of the chromosomes. At telophase, the spindle is persistent and the reforming nuclei are separated by cytoplasmic strands containing microtubules, interspersed with vacuoles. Extensive bundles of microtubules, dictyosomes and parallel, slightly inflated ER-profiles extend from the poles of the telophase nucleus along the longitudinal side of the chloroplast. Conceivably, these microtubules guide the nucleus during its post-mitotic migration towards its central interphase position between the two halves of the dividing chloroplast. Throughout the mitotic cycle, ubiquitous dictyosomes, positioned near the chloroplast core, seem very active. Arrays of microtubules run towards these dictyosomes and may conduct the dictyosome-vesicles to the cleavage plane. At metaphase, septum growth becomes visible as an annular ingrowth of the plasmalemma. At late telophase or at entering interphase, an extensive clump of vesicles, associated with longitudinal bundles of microtubules, appears between the leading edges of the advanced furrow. Apparent fusion of these vesicles with the head of the centripetally-growing furrow results in its completion. The pattern of mitosis and cytokinesis inZygnema is compared with that of closely related green algae.  相似文献   

5.
Summary Myxamoebae ofEchinostelium minutum exhibit extranuclear (open spindle) mitosis with centrioles present at the poles. Spindle microtubules are formed in association with a juxtanuclear MTOC which surrounds the cell's complement of centrioles. During late prophase or prometaphase the nuclear envelope breaks down and subsequently a metaphase plate is formed. Two anaphasic movements occur sequentially: firstly, the distance of the chromosomes to the poles shortens; secondly the distance between the spindle poles increases. The arrangement of spindle microtubules during anaphase is consistent with the hypothesis that chromosomal separation is due to lateral interaction (zippering) of microtubules. During telophase, reconstitution of the nuclear envelope usually takes place in the interzonal region prior to reformation in the polar region. Cytokinesis, which begins in anaphase or early telophase involves the participation of vesicles, microfilaments and microtubules.Based on the doctoral dissertation of the first author presented to the Department of Botany, University of Washington, Seattle, WA 98195, U.S.A.  相似文献   

6.
Somatic nuclear divisions in sporangiogenous plasmodia of Woronina pythii Goldie-Smith were studied with transmission electron microscopy. During metaphase, each nucleus formed a cruciform configuration as chromatin became aligned at the equatorial plate perpendicular to the persistent nucleolus. Except for polar fenestrations, the original nuclear envelope remained intact throughout the mitotic division. Intranuclear membranous vesicles appeared to bleb off the inner membrane of the original nuclear envelope, adhered to the surfaces of the separating chromatin, and eventually formed new daughter nuclear envelope within the original nuclear envelope. During the first 24 hr of vegetative plasmodial growth, each telophase nucleus exhibited an obvious constriction of the original nuclear envelope in the interzonal region. Similar constrictions were not evident in telophase nuclei found in 24–36-hr-old plasmodia. This variation in the ultrastructural morphology of cruciform division appears to be related to the age and size of each sporangiogenous plasmodium, and is the first to be documented within this group of fungal pathogens.  相似文献   

7.
Summary Cultured soybean cells recovered from a marked decrease in cell division 20 hours after removal of their cell walls with enzymes and exhibited sustained mitotic activity. Mitosis was essentially similar in both cultured cells and protoplasts. At prophase microtubules aggregated in a clear zone surrounding the nucleus prior to forming the spindle. During metaphase and anaphase chromosomal microtubules were attached to diffuse kinetochores and extended to broad spindle poles; few interzonal microtubules were evident. Considerable endoplasmic reticulum was present at the spindle poles throughout division and may contribute to the new nuclear envelope at telophase. A typical phragmoplast consisting of vesicles, overlapping microtubules and associated electron-dense material appeared earlier in the protoplasts and developed into a thicker cell plate than found in the cultured cells.Supported by the National Research Council of Canada, Grant A6304.  相似文献   

8.
The fine structure of stages in mitosis in a colorless euglenoid, Anisonema sp., reveals that chromosomes remain condensed throughout the life cycle and are attached to the nuclear envelope at interphase. The onset of mitosis is marked by the anterior migration of the nucleus towards the base of the reservoir and by elongation of the nucleolus. The nuclear envelope persists throughout mitosis. Microtubules are generated in the peripheral nucleoplasm adjacent to the envelope and attach to the chromosomes while they are still associated with the envelope. The region of microtubular contact develops into a distinct layered kinetochore as the developing spindle with attached chromosomes separates from the nuclear envelope and moves into the nucleoplasm. The mature spindle consists of a number of subspindles each containing about 8–10 microtubules and a few associated chromosomes. Both chromosomal and non-chromosomal microtubules are present in each subspindle and extend towards the envelope terminating at or near the nuclear pores. Chromosomal segregation is concomitant with nuclear elongation. By late division, an interzonal spindle develops in the dumbbell-shaped nucleus and nucleolar separation occurs. Continued invagination of the nuclear envelope in the region of the interzonal spindle eventually separates the daughter nuclei. A remnant of the interzonal spindle persists in the cytoplasm until cytokinesis.  相似文献   

9.
Rat kangaroo (PtK2) cells were fixed and embedded in situ. Cells in mitosis were studied with the light microscope and thin sections examined with the electron microscope. Pericentriolar, osmiophilic material, rather than the centrioles, is probably involved in the formation of astral microtubules during prophase. Centriole migration occurs during prophase and early prometaphase. The nuclear envelope ruptures first in the vicinity of the asters. Nuclear pore complexes disintegrate as envelope fragments are dispersed to the periphery of the mitotic spindle. Microtubules invade the nucleus through gaps of the fragmented envelope. The number of microtubules and the degree of spindle organization increase during prometaphase and are maximal at metaphase. At this stage, chromosomes are aligned on the spindle equator, sister kinetochores facing opposite poles. Cytoplasmic organelles are excluded from the spindle. Prominent bundles of kinetochore microtubules converge towards the poles. Spindles in cold-treated cells consist almost exclusively of kinetochore tubules. Separating daughter chromosomes in early anaphase are connected by chromatin strands, possibly reflecting the rupturing of fibrous connections occasionally observed between sister chromatids in prometaphase. Breakdown of the spindle progresses from late anaphase to telophase, except for the stem bodies. Chromosomes decondense to form two masses. Nuclear envelope reconstruction, probably involving endoplasmic reticulum, begins on the lateral faces. Nuclear pores reappear on membrane segments in contact with chromatin. Microtubules are absent from reconstructed daughter nuclei.This report is to a large part based on a dissertation submitted by the author to the Graduate Council of the University of Florida in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

10.
Cell division in Chlamydomonas moewusii is described. The cells become immobile with flagellar abscission prior to mitosis. The basal bodies migrate toward the nucleus and become intimately associated with the nuclear membrane which is devoid, of ribosomes where adjacent to the basal bodies. The basal bodies replicate at preprophase. The nucleolus fragments at this stage. By prophase the basal body pairs have migrated, to the nuclear poles. Spindle fibers become prominent in the nucleus. The nuclear membrane does not fragment. The nucleus assumes a crescent-form by metaphase. Polar fenestrae are absent. Kinetochores appear at anaphase. An interzonal spindle elongates as the chromosomes move to the nuclear poles. Daughter nuclei become abscised by an ingrowth of nuclear membrane, leaving behind a separated, degenerating interzonal spindle. Ribosomes reappear on the outer nuclear membrane at late telophase. Nucleoli reform early in cytokinesis. The cleavage furrow, associated microtubules, and endoplasmic reticulum comprise the phycoplast. Cytokinesis proceeds rapidly after the completion of telophase. The basal body-nucleus relationship becomes reorganized into the typical interphase condition late in cytokinesis. Specific and predictable organelle rearrangements during mitosis have been described. Cell division in C. moewusii is compared with other algae, especially C. reinhardi.  相似文献   

11.
ABSTRACT The ultrastructural features of cell division in the biflagellate, phagotrophic euglenoid, Entosiphon sulcatum, have been examined. Prophase is marked by the appearance of daughter feeding apparatuses and the emergence of two additional flagella. Pairs of flagella begin to migrate laterally along the surface of the elongating nucleus and remain lateral to the developing spindle poles. As the nucleolus elongates, it becomes dumbbell-shaped and the chromosomes move to the center of the nucleus, forming a loosely organized metaphase plate. Microtubules from opposing spindle poles attach to one of the pair of kinetochores found on each chromosome. The initial chromosome separation occurs during anaphase as the nucleus elongates. The length of the chromosomal microtubules does not decrease until late anaphase/early telophase. As the nucleus elongates, it forms a dumbbell-shaped structure. Most of the remaining microtubules are positioned in the interzone between the forming daughter nuclei. The interzonal spindle becomes somewhat constricted but remains intact until it is broken by the impinging cleavage furrow. Replication of the pellicular strips is not completed until late in cytokinesis.  相似文献   

12.
Asteromonas gracilis Artari remains motile throughout cell division. Basal bodies separate and replicate at prophase. They are located lateral to the poles of the closed metaphase spindle. Kinetochores appear at late metaphase. Chromosomes move to the poles and extensions of the nuclear envelope develop into the pyrenoid at anaphase. The interzonal spindle disintegrates at telophase and a diffuse phycoplast is present. Cytokinesis proceeds rapidly from the anterior region of the cell. Newly formed daughter cells have four narrow-banded rootlets and both distal and proximal fibers connect the basal bodies. Features of cell division in Asteromonas are compared to those in other algae, particularly Dunaliella and Chlamydomonas.  相似文献   

13.
ABSTRACT. Mitosis and cytokinesis in Katablepharis ovalis , a colorless flagellate, was investigated. Two new flagella are produced prior to prophase, resulting in a motile quadriflagellate cell during mitosis. the inner array of microtubules of the feeding apparatus disappears before prophase begins. the nuclear envelope disperses during prophase, apparently being converted into rough endoplasmic reticulum. the chromatin condenses and the nucleolus disperses with spindle microtubules appearing oriented perpendicular to the longitudinal axis of the cell. At metaphase, the chromatin is condensed as a single disc-shaped mass and rough endoplasmic reticulum flanks the chromatin mass on each side. Groups of spindle microtubules pass through tunnels in the rough endoplasmic reticulum and through electron-translucent areas of the chromatin. the spindle microtubules end at a number of minipoles in the cytoplasm. Vesicles, ribosomes, mitochondria and endoplasmic reticulum migrate among the spindle microtubules. There is no polar body or any electrondense area associated with the spindle poles. the basal bodies of the flagella remain attached to the axonemes and do not participate in mitosis. In anaphase, the chromatin separates and migrates to the poles. During telophase, the nuclear envelope reforms from the rough endoplasmic reticulum and the nucleoli reappear. the spindle microtubules are persistent during telophase. Cytokinesis occurs by longitudinal fission, starting at the anterior end and progressing posteriorly. Cytokinesis may be driven by elongation of the spindle microtubules since there is no visible structure associated with the furrowing.  相似文献   

14.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   

15.
The spindle apparatus ofCoprinus micaceus begins to develop from the diglobular polar body outside the nucleus. During both meiotic divisions it operates inside the nuclear envelope and consists of two amorphous poles, a central bundle of interpolar microtubules, and chromosomal microtubules. A metaphase plate cannot exist because the interpolar strand of fibers is persistent throughout the division process. Within the spindle axis more than 100 microtubules can be estimated. They are encircled by a ring of chromatic structures. During the telophase the former spindle pole is evaginated from the nuclear envelope and contacts the plasmalemma near the cell wall.  相似文献   

16.
Mitosis is described in the flagellate Oxyrrhis marina Dujardin and is compared in related genera. Dense plaques develop in the nuclear envelope at prophase and give rise to an intranuclear spindle. Some of the microtubules associate with the chromosomes while others extend across the nucleus. The basal bodies migrate toward the poles early in division and retain a position lateral to the nuclear poles throughout mitosis. Microtubules are not present between the nucleus and the basal bodies. The nucleolus is persistent and elongates throughout anaphase and telophase. Chromosomal separation is accomplished by sliding of non-chromosomal microtubules and by elongation of the nuclear envelope rather than by shortening of the spindle microtubules. The nuclear envelope begins to constrict in the center early in anaphase. Continued constriction of the envelope and elongation of the nucleus leads to the formation of a dumbbell-shaped nucleus by late telophase. Mitosis culminates by the constriction of the nucleus into two daughter nuclei. The taxonomic position of Oxyrrhis marina is discussed in light of these findings.  相似文献   

17.
Summary Asexual reproduction inKirchneriella lunaris involves autospore formation. After an initial mitosis, the curved cell cleaves to a variable extent, and then the nuclei divide again; finally the cytoplasm is partitioned into four around each nucleus. Rudimentary centrioles appear prior to the first mitosis; centriole complexes then become associated with a developing sheath of extranuclear microtubules at prophase; fenestrae appear at the poles through which both microtubules and centrioles migrate, preceding intranuclear spindle formation. The nucleus meanwhile is enveloped by a perinuclear layer of endoplasmic reticulum which is also interposed between the golgi body and nuclear envelope. Chromosome separation is accompanied by considerable spindle elongation. Finally the reforming nuclear envelope excludes both centriole complex and interzonal spindle apparatus from daughter nuclei. Cleavage is preceded by i) nuclear movement to the cell center, ii) movement of centriole complexes around daughter nuclei until they are opposite one another, and iii) the concurrent formation of a system of transverse microtubules extending across the cell. Other microtubules encircle the cell predicting the cleavage plane. A septum then appears amongst these cytokinetic microtubules, possibly derived from the plasmalemma; it extends across the cell too, through the cleaving peripheral chloroplast. Secondary mitoses follow (as above) during which this septum may be partially resorbed. Finally this septum is reformed, if necessary, and two other septa appear (as above) to quadripartition the cell. Mitotic and cytokinetic structures in this algae are briefly compared with some others.  相似文献   

18.
The ultrastructural features of mitosis in the colorless phagotrophic euglenoid, Ploeotia costata (Farmer and Triemer 1988bn; syn: Serpenomonas costata, Triemer 1986) are described. During interphase the nucleus is rounded and lies adjacent to the reservoir and the four basal bodies, two of which bear flagella. At the onset of mitosis, two additional flagella are generated from the accessory basal bodies such that four basal bodies with flagella now lie at one pole of the prophase nucleus. Microtubules develop in the nucleus prior to migration of one of the basal body pairs to the opposite pole of the nucleus. By metaphase, chromosomes with layered kinetochores are aligned on the equator of the spindle, and a dumbbellshaped nucleolus stretches from pole to pole. Continued elongation of the nucleus results in the separation of the chromosomal masses at anaphase. The distance between the nuclear poles from metaphase to anaphase changes little although the overall length of the nucleus nearly doubles. By telophase a large interzonal spindle develops between the forming daughter nuclei. The extended interzonal spindle breaks near the center prior to cell cleavage.  相似文献   

19.
F. W. Spiegel 《Protoplasma》1982,113(3):178-188
Summary Mitosis in the protostelidPlanoprotostelium aurantium Olive andStoianovich is characterized by an open, centric spindle. The nuclear envelope breaks down prior to metaphase, begins to reform during late anaphase, and is complete by telophase. Centrioles are present at the poles throughout mitosis and are devoid of rootlet microtubules from metaphase to late anaphase. Chromosomes are small and numerous and are attached to single kinetochore microtubules during metaphase and early anaphase. Chromosome separation takes place by a presumed shortening of the chromosome to pole spindle followed by a lengthening of the interzonal spindle. Mitosis inP. aurantium is similar to that of certain other protostelid amoebae and to myxomycete amoebae, but it is considerably different from that of dictyostelid amoebae. The phylogenetic significance of this is discussed.This research represents part of a Ph.D. dissertation presented to the University of North Carolina.  相似文献   

20.
Summary The three-dimensional structure of the spindle pole body (SPB) and meiotic spindle during early metaphase I through telophase I inPuccinia malvacearum is analyzed ultrastructurally from serial sections. During early metaphase I the spindle rotates from the perpendicular to a position oblique to the longitudinal axis and parallel to the sagittal plane of the cell. Tubular cisternae are present within the spindle at this stage. The half middle piece (MP) subtends a collateral disc (co-disc) which is inserted eccentrically within each SPB. The SPB, co-disc and half MP at opposite poles are in mirror image. During the transition from early metaphase I to full metaphase I, the spindle orients parallel to the lateral wall of the promycelium and the half MPs are lost. The co-discs partially detach from each discoid SPB and maintain this relation until the end of interphase I. Co-discs become further differentiated as they attach to the subtending sheath-like extension of the nuclear envelope previously occupied by the half MPs. Microvesicles within the nucleoplasm are specific to mid metaphase I. A metaphase plate is absent. The 14 bivalents, which are directly connected to each polar SPB by 2 to 3 kinetochore MTs, are spread over nearly the entire length of the central spindle. The first anaphasic movement involves asynchronous shortening of the kinetochore MTs while the second consists of extensive pole-to-pole elongation. Astral MTs first appear at early metaphase I and become most numerous at anaphase I. An intact nuclear envelope constricts against the central spindle at either end of the interzonal region. Concurrently, centripetal growth of the nuclear envelope under each SPB results in their gradual externalization by the end of telophase I. The sibling nuclei are cut off by constriction of the nuclear envelope at either end of the interzonal region. These meiotic stages inP. malvacearum are compared with those in other basidiomycetes and ascomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号