首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased nutrient intake leads to excessive adipose tissue accumulation, obesity, and the development of associated metabolic disorders. How the intestine signals to adipose tissue to adapt to increased nutrient intake, however, is still not completely understood. We show here, that the gut peptide GLP-1 or its long-lasting analog liraglutide, function as intestinally derived signals to induce adipocyte formation, both in vitro and in vivo. GLP-1 and liraglutide activate the GLP-1R, thereby promoting pre-adipocyte proliferation and inhibition of apoptosis. This is achieved at least partly through activation of ERK, PKC, and AKT signaling pathways. In contrast, loss of GLP-1R expression causes reduction in adipogenesis, through induction of apoptosis in pre-adipocytes, by inhibition of the above mentioned pathways. Because GLP-1 and liraglutide are used for the treatment of type 2 diabetes, these findings implicate GLP-1 as a regulator of adipogenesis, which could be an alternate pathway leading to improved lipid homeostasis and controlled downstream insulin signaling.  相似文献   

2.
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.  相似文献   

3.
GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2<2 min). To circumvent this, we developed a long-lasting GLP-1 receptor agonist by the fusion of GLP-1 with human IgG2 Fc (GLP-1/hIgG2). ELISA-based receptor binding assay demonstrated that GLP-1/hIgG2 had high binding affinity to the GLP-1R in INS-1 cells (Kd = 13.90±1.52 nM). Upon binding, GLP-1/hIgG2 was rapidly internalized by INS-1 cells in a dynamin-dependent manner. Insulin RIA showed that GLP-1/IgG2 dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (i.p.), the GLP-1/hIgG2 peaked at 30 minutes in circulation and maintained a plateau for >168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.  相似文献   

4.
The main target of action of glucagon-like peptide-1 (GLP-1) is the islet, where the hormone stimulates insulin secretion, promotes beta cell proliferation and neogenesis, and inhibits glucagon secretion. However, GLP-1 receptors are also expressed outside the islets, increasing the likelihood that GLP-1 also plays a role in other organs. These functions are mainly the inhibition of gastric emptying, gastric acid secretion and exocrine pancreatic secretion, indicating that the hormone acts as an enterogastrone--a hormone released from the distal portion of the small intestine that inhibits proximal gastrointestinal events. Another important action of GLP-1 is to induce satiety. Other effects of the hormone include cardioprotection, neuroprotection, induction of learning and memory, stimulation of afferent, sensory nerves, stimulation of surfactant production in the lung, dilatation of pulmonary vessels, induction of diuresis, and also under some conditions, induction of antidiabetic actions unrelated to islet function. Thus, GLP-1 clearly has several manifestations of activity. The physiological relevance of these actions and their contribution to the overall antidiabetic action of GLP-1 when used in treatment of type 2 diabetes remains to be established.  相似文献   

5.
6.
Exercise-induced physical endurance enhancement and skeletal muscle remodeling can prevent and delay the development of multiple diseases, especially metabolic syndrome. Herein, the study explored the association between glucagon-like peptide-1 (GLP-1) secretion and exercise, and its effect on skeletal muscle remodeling to enhance endurance capacity. We found both acute exercise and short-term endurance training significantly increased the secretion of GLP-1 in mice. Recombinant adeno-associated virus (AAV) encoding Gcg (proglucagon) was used to induce the overexpression of GLP-1 in skeletal muscle of mice. Overexpression of GLP-1 in skeletal muscle enhanced endurance capacity. Meanwhile, glycogen synthesis, glucose uptake, type I fibers proportion, and mitochondrial biogenesis were augmented in GLP-1-AAV skeletal muscle. Furthermore, the in vitro experiment showed that exendin-4 (a GLP-1 receptor agonist) treatment remarkably promoted glucose uptake, type I fibers formation, and mitochondrial respiration. Mechanistically, the knockdown of AMPK could reverse the effects imposed by GLP-1R activation in vitro. Taken together, these results verify that GLP-1 regulates skeletal muscle remodeling to enhance exercise endurance possibly via GLP-1R signaling-mediated phosphorylation of AMPK.  相似文献   

7.
Li Y  Zheng X  Tang L  Xu W  Gong M 《Peptides》2011,32(6):1303-1312
The multiple physiological characterizations of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the therapy of type 2 diabetes. However, the half-life of GLP-1 is short in vivo due to degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. This indicates that the stabilization of GLP-1 is critical for its utility in drug development. In this study, we developed a cluster of GLP-1 mutants containing an inter-disulfide bond that is predicted to increase the half-life of GLP-1 in vivo. Exendin-4 was also mutated with a disulfide bond similar to the GLP-1 analogs. In this study, the binding capacities of the mutants were determined, the stabilities of the mutants were investigated and the physiological functions of the mutants were compared with those of wild-type GLP-1 and exendin-4 in animals. The results indicated that the mutants remarkably raised the half-life in vivo; they also showed better glucose tolerance and higher HbA1c reduction than GLP-1 and exendin-4 in rodents. These results suggest that GLP-1 and exendin-4 mutants containing disulfide bonds might be utilized as possible potent anti-diabetic drugs in the treatment of type 2 diabetes mellitus.  相似文献   

8.
Glucagon-like peptide-1 (GLP-1)-based therapy of type 2 diabetes is executed either by GLP-1 receptor agonists, which stimulate the GLP-1 receptors, or by dipeptidyl peptidase-4 (DPP-4) inhibitors, which prevent the inactivation of endogenous GLP-1 thereby increasing the concentration of endogenous active GLP-1. GLP-1 activates pancreatic receptors resulting in improved glycemia through glucose-dependent stimulation of insulin secretion and inhibition of glucagon secretion. There is also a potential beta cell preservation effect, as judged from rodent studies. GLP-1 receptors are additionally expressed in extrapancreatic tissue, having potential for the treatment to reduce body weight and to potentially have beneficial cardio- and endothelioprotective effects. Clinical trials in subjects with type 2 diabetes have shown that in periods of 12 weeks or more, these treatments reduce HbA1c by ≈ 0.8–1.1% from baseline levels of 7.7–8.5%, and they are efficient both as monotherapy and in combination therapy with metformin, sulfonylureas, thiazolidinediones or insulin. Furthermore, GLP-1 receptor agonists reduce body weight, whereas DPP-4 inhibitors are body weight neutral. The treatment is safe with very low risk for adverse events, including hypoglycaemia. GLP-1 based therapy is thus a novel and now well established therapy of type 2 diabetes, with a particular value in combination with metformin in patients who are inadequately controlled by metformin alone.  相似文献   

9.
Incretin-based therapy promises to be a useful adjunct in the treatment of diabetes. Glucagon-like peptide-1 (GLP1) and, to a lesser extent, glucose-dependent insulinotropic polypeptide (GIP) are potent stimulators of insulin secretion, and consequently have significant effects on the regulation of the glucose metabolism. What has been less clear, however, is whether these hormones exert direct effects on glucose metabolism independent of their effect on pancreatic insulin and glucagon release. Glucose effectiveness and insulin action (the ability of glucose and insulin respectively to stimulate glucose uptake and suppress glucose release) have been reported by some investigators, but not others, to improve during incretin infusion. The purpose of this review is briefly to examine some of the numerous conflicting reports in the literature as to the presence or otherwise of extrapancreatic incretin effects. In addition, we will briefly discuss the gastrointestinal effects of incretins. These effects may be of considerable importance in the treatment of postprandial hyperglycemia although they are not, strictly speaking, the result of a direct incretin effect on glucose metabolism.  相似文献   

10.
近年来,从细菌、真菌等低等生物和爬行类、哺乳类等高等动物的体内,都发现存在着结构和功能相关、相似的促胰岛素释放肽或GLP-1类似物.目前国内外研究都在密切关注胰高血糖素样肽-1(glucagonl-ikepeptide-1,G LP-1)和G LP-1类似物等胰高血糖素家族肽,对其进行基因工程高效表达或通过组合化学方法修饰、改造,从而设计治疗Ⅱ型糖尿病的多肽类药物.但是,从天然生物体内,尤其是最近从两栖类动物皮肤分泌液中和响尾蛇毒素中发现了大量能稳定促进胰岛素释放的生物活性肽,却还没有受到足够的重视,它们将很可能为筛选和开发出安全、高效、半衰期长的治疗Ⅱ型糖尿病新药物提供全新的思路和广阔的前景.  相似文献   

11.

Context

Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified.

Objective

To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal.

Design

Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal.

Main Outcome Measures

Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins.

Results

The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest.

Conclusions

In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor.  相似文献   

12.
目的:通过对不同活性检测方法的综合比较,筛选最适的胰高血糖素样肽1(GLP-1)或其类似物的体外活性检测方法,为GLP-1类似物的体外生物活性检测奠定基础。方法:以GLP-1作为阳性药物,用MTT方法检测其对RIN-m-5F、MIN6细胞增殖的影响;用ELISA方法检测其对INS-1、MIN6细胞胰岛素分泌量的影响;用ELISA方法检测其对BHK-GLP-1R细胞cAMP分泌水平的影响。通过对上述方法的综合比较,筛选出最适的活性检测方法。结果:GLP-1对细胞增殖的影响实验结果并不显著,对胰岛素分泌量影响的实验效果明显,对cAMP分泌水平的实验无明显效果。结论:ELISA检测GLP-1或其类似物对MIN6细胞胰岛素分泌量实验可用于GLP-1或其类似物的体外活性检测。  相似文献   

13.
Circulation and degradation of GIP and GLP-1.   总被引:8,自引:0,他引:8  
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestinal K- and L-cells, respectively, but are immediately subject to rapid degradation. GLP-1 is found in two active forms, amidated GLP-1 (7-36) amide and glycine-extended GLP-1 (7-37), while GIP exists as a single 42 amino acid peptide. The aminopeptidase, dipeptidyl peptidase IV (DPP IV), which is found in the endothelium of the local capillary bed within the intestinal wall, is important for the initial inactivation of both peptides, with GLP-1 being particularly readily degraded. DPP IV cleavage generates N-terminally truncated metabolites (GLP-1 (9-36) amide / (9-37) and GIP (3-42)), which are the major circulating forms. Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific manner. However, other endogenous metabolites have not yet been identified, possibly because existing assays are unable either to recognize them or to differentiate them from the primary metabolites. Neutral endopeptidase 24.11 has been demonstrated to be able to degrade GLP-1 in vivo, but its relevance in GIP metabolism has not yet been established. Intact GLP-1 and GIP are inactivated during passage across the hepatic bed by DPP IV associated with the hepatocytes, and further degraded by the peripheral tissues, while the kidney is important for the final elimination of the metabolites.  相似文献   

14.
The interest in glucagon-like petide-1 (GLP-1) and other pre-proglucagon derived peptides has risen almost exponentially since seminal papers in the early 1990s proposed to use GLP-1 agonists as therapeutic agents for treatment of type 2 diabetes. A wealth of interesting studies covering both normal and pathophysiological role of GLP-1 have been published over the last two decades and our understanding of GLP-1 action has widened considerably. In the present review, we have tried to cover our current understanding of GLP-1 actions both as a peripheral hormone and as a central neurotransmitter. From an initial focus on glycaemic control, GLP-1 research has been diverted to study its role in energy homeostasis, neurodegeneration, cognitive functions, anxiety and many more functions. With the upcoming introduction of GLP-1 agonists on the pharmaceutical venue, we have witnessed an outstanding example of how initial ideas from basic science laboratories have paved their way to become a novel therapeutic strategy to fight diabetes.  相似文献   

15.
16.
The incretin hormone glucagon-like peptide-1 (GLP-1)-(736)amide is best known for its antidiabetogenic actions mediated via aGLP-1 receptor present on pancreatic endocrine cells. To investigatethe molecular mechanisms of GLP-1 action in muscle, we used cultured L6myotubes. In L6 myotubes, GLP-1 enhanced insulin-stimulated glycogensynthesis by 140% while stimulatingCO2 production and lactateformation by 150%. In the presence of IBMX, GLP-1 diminished cAMPlevels to 83% of IBMX alone. In L6 myotubes transfected with pancreatic GLP-1 receptor, GLP-1 increased cAMP levels and inhibited glycogen synthesis by 60%. An antagonist of pancreatic GLP-1 receptor, exendin-4-(939), inhibited GLP-1-mediated glycogen synthesis in GLP-1receptor-transfected L6 myotubes. However, in parental L6 myotubes,exendin-4-(939) and GLP-1-(136) amide, an inactive peptide onpancreatic GLP-1 receptor, displaced125I-labeled GLP-1binding and stimulated glycogen synthesis by 186 and 130%,respectively. These results suggest that the insulinomimetic effects ofGLP-1 in L6 cells are likely to be mediated by a receptor that isdifferent from the GLP-1 receptor found in the pancreas.

  相似文献   

17.
目的:探讨下丘脑室旁核(hypothalamic paraventricular nucleus,PVN)注射GLP-1(胰高血糖素样肽-1)对糖尿病大鼠胃排空的影响及机制。方法:30只Wistar大鼠随机分为正常对照组(NC组)、糖尿病组(DM组)和GLP-1干预组(GLP-1组),每组各10只。DM组和GLP-1组腹腔注射链脲佐菌素,三组大鼠均PVN区埋置套管,恢复7d,GLP-1组微量注射0.5μg/0.5μl的GLP-1,NC组和DM组大鼠PVN区微量注射等体积生理盐水。甲基纤维素-酚红灌胃法检测胃排空;半定量RT-PCR检测大鼠下丘脑GLP-1RmRNA的表达。结果:DM组胃排空率较NC组明显升高(P<0.05),GLP-1组胃排空明显低于DM组(P<0.05),GLP-1组和NC组差异无统计学意义(P>0.05)。GLP-1组下丘脑GLP-1RmRNA的表达明显高于DM组和NC组(P<0.05),并与胃排空率成负相关(P<0.05)。DM组和NC组差异无统计学意义(P>0.05)。结论:PVN区注射GLP-1可以抑制糖尿病大鼠早期胃排空加速,作用机制可能和促进下丘脑GLP-1受体表达有关。  相似文献   

18.
Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.  相似文献   

19.
基于胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)结构改变得到的GLP-1类似物,能迅速、高效、持久地降低血糖及糖化血红蛋白,具有改善胰岛β细胞功能、调节收缩压、保护心血管、降低血脂、减轻体重、延迟胃排空、增加饱腹感等作用,成为近年来2型糖尿病治疗领域研究的热点。本文对GLP-1及其类似物的结构、功能、不良反应、蛋白质结构研究的方法作一综述。  相似文献   

20.
GLP-1 is an incretin hormone that can effectively lower blood glucose, however, the short time of biological activity and the side effect limit its therapeutic application. Many methods have been tried to optimize GLP-1 to extend its in vivo half-time, reduce its side effect and enhance its activity. Here we have chosen the idea to dimerize GLP-1 with a C-terminal lysine to form a new GLP-1 analog, DLG3312. We have explored the structure and the biological property of DLG3312, and the results indicated that DLG3312 not only remained the ability to activate the GLP-1R, but also strongly stimulated Min6 cell to secrete insulin. The in vivo bioactivities have been tested on two kinds of animal models, the STZ induced T2DM mice and the db/db mice, respectively. DLG3312 showed potent anti-diabetic ability in glucose tolerance assay and single-dose administration of DLG3312 could lower blood glucose for at least 10 hours. Long-term treatment with DLG3312 can reduce fasted blood glucose, decrease water consumption and food intake and significantly reduce the HbA1c level by 1.80% and 2.37% on STZ induced T2DM mice and the db/db mice, respectively. We also compared DLG3312 with liraglutide to investigate its integrated control of the type 2 diabetes. The results indicated that DLG3312 almost has the same effect as liraglutide but with a much simpler preparation process. In conclusion, we, by using C-terminal lysine as a linker, have synthesized a novel GLP-1 analog, DLG3312. With simplified preparation and improved physiological characterizations, DLG3312 could be considered as a promising candidate for the type 2 diabetes therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号