首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present study we investigate the fibrin(ogen)-endothelial cell binding and the effect of thrombin on the endothelial cells in relation to fibrin(ogen) binding capacity. Endothelial cell fibrinogen binding was concentration and time-dependent, reaching saturation at 1.4 M of added ligand. At equilibrium, the number of fibrinogen molecules bound per endothelial cell in the monolayer was 5.8±0.7×106. When endothelial cells were activated by different concentrations of thrombin (0–0.1 NIH units ml–1), no increase in fibrinogen binding capacity was observed at all the thrombin concentration tested. Whereas disruption of endothelial cell monolayers was observed at thrombin concentrations higher than 0.05 NIH units ml–1, no increase in the amount of fibrinogen bound was observed. Therefore, resting and thrombin-activated endothelial cells show the same fibrinogen binding capacity.The adhesion of endothelial cells in suspension on immobilized fibrinogen or fibrin was studied to ascertain whether the behavior of fibrin is similar to that of fibrinogen. The extent of endothelial cell attachment to immobilized fibrinogen and fibrin was similar (4275±130 cells cm–2 for fibrinogen and 4350±235 cells cm–2 for fibrin) and represent approximately 40% of the added endothelial cells. However, endothelial cell adhesion to immobilized fibrin was significantly faster than endothelial cell adhesion to immobilized fibrinogen. The maximum binding rate was 66±9 and 46±8 cells cm–2 min–1 for fibrin and fibrinogen, respectively. Therefore, the fibrinopeptides released by thrombin from fibrinogen induce qualitative changes which enhance the fibrin interaction with the endothelial cells.  相似文献   

2.
Objectives: Transplantation of endothelial progenitor cells (EPCs) is a promising approach for revascularization of tissue. We have used a natural and biocompatible biopolymer, fibrin, to induce cell population growth, differentiation and functional activity of EPCs. Materials and methods: Peripheral blood mononuclear cells were cultured for 1 week to obtain early EPCs. Fibrin was characterized for stiffness and capability to sustain cell population expansion at different fibrinogen–thrombin ratios. Viability, differentiation and angiogenic properties of EPCs were evaluated and compared to those of EPCs grown on fibronectin. Results: Fibrin had a nanometric fibrous structure forming a porous network. Fibrinogen concentration significantly influenced fibrin stiffness and cell growth: 9 mg/ml fibrinogen and 25 U/ml thrombin was the best ratio for enhanced cell viability. Moreover, cell viability was significantly higher on fibrin compared to being on fibronectin. Even though no significant difference was observed in expression of endothelial markers, culture on fibrin elicited marked induction of stem cell markers OCT 3/4 and NANOG. In vitro angiogenesis assay on Matrigel showed that EPCs grown on fibrin retain angiogenetic capability as EPCs grown on fibronectin, but significantly better release of cytokines involved in cell recruitment was produced by EPC grown on fibrin. Conclusion: Fibrin is a suitable matrix for EPC growth, differentiation and angiogenesis capability, suggesting that fibrin gel may be very useful for regenerative medicine.  相似文献   

3.
In tissue engineering techniques, three-dimensional scaffolds are needed to adjust and guide cell growth and to allow tissue regeneration. The scaffold must be biocompatible, biodegradable and must benefit the interactions between cells and biomaterial. Some natural biomaterials such as fibrin provide a structure similar to the native extracellular matrix containing the cells. Fibrin was first used as a sealant based on pools of commercial fibrinogen. However, the high risk of viral transmission of these pools led to the development of techniques of viral inactivation and elimination and the use of autologous fibrins. In recent decades, fibrin has been used as a release system and three-dimensional scaffold for cell culture. Fibrin scaffolds have been widely used for the culture of different types of cells, and have found several applications in tissue engineering. The structure and development of scaffolds is a key point for cell culture because scaffolds of autologous fibrin offer an important alternative due to their low fibrinogen concentrations, which are more suitable for cell growth.  相似文献   

4.
INTEREST has focused recently on the clinical use of proteolytic enzymes similar in properties to thrombin which can directly cleave fibrinogen. Potentially the most important are arvin, derived from the venom of Agkistrodon rhodostoma and reptilase, isolated from the venom of Bothrops atrox. These only release fibrinopeptide A from fibrinogen1–3, whereas thrombin cleaves fibrinopeptides A and B from fibrinogen to form fibrin. Thrombin also activates fibrin stabilizing factor (FSF) which introduces amide bonds between the subunits of soluble fibrin4. FSF rapidly forms covalent links between pairs of γ(C)-chains giving γ(C)-dimers and in a slower reaction α(A)-chains are linked to produce high molecular weight polymers5. Although reptilase, like thrombin, activates FSF6, arvin apparently does not, which would explain why the fibrin formed by arvin seems to be more friable than that produced by thrombin or reptilase7.  相似文献   

5.
《Biologicals》2014,42(5):277-284
Fibrin used for biomedical applications is prepared by mixing concentrated solutions of fibrinogen and thrombin in presence of cross-linking agents such as Factor XIII or glutaraldehyde. The main drawbacks associated with this procedure include cost, complexity and time required for fibrin preparation. Hence, present study deals with the characterization of physiologically clotted fibrin (PF) for bone tissue engineering and drug delivery applications. For this the physico-chemical properties of PF were compared with those of the conventionally prepared fibrin (CF). Further MTT and haemolytic assays were performed for both PF and CF to compare their biocompatibility. The amount of alkaline phosphatase produced and calcium secreted by MG-63 cells in the presence of PF and CF were used to relate the osteogenic potency of PF with that of CF. Gallic acid, an anti-cancer drug was loaded within PF and CF and their role in drug delivery was compared.  相似文献   

6.
That the role of thrombin in the conversion of fibrinogen to fibrin is essentially enzymatic, is established not only by the minute amounts of thrombin which are effective but also by the complete independence of fibrin yields and thrombin concentrations over a very wide range of thrombin dilutions and clotting times. The thrombin-fibrinogen reaction, in the phase beyond the "latent period" at least, seems fundamentally "first order." Technical requirements of the experiments leading to these conclusions include: (1) a highly purified (e.g. 97 per cent "clottable") fibrinogen, (2) absence of traces of thrombic impurities in the fibrinogen, (3) absence of fibrinolytic protease contaminant of the thrombin and the fibrinogen, and (4) sufficient stability of the thrombin even at very high dilutions. Four conditions affecting thrombin stability have been investigated. Fibrin yields are not significantly modified by numerous experimental circumstances that influence the clotting time, such as (1) temperature, (2) pH, (3) non-specific salt action due to electrical (ionic) charges, which alter the Coulomb forces involved in the fibrillar aggregation, (4) specific ion effects, whether clot-accelerating (e.g. Ca++) or clot-inhibitory (e.g. Fe(CN)6'), (5) occluding (adsorptive) colloids, which have a "fibrinoplastic" action, e.g. (a) acacia and probably (b) fibrinogen which has been mildly "denatured" by salt-heating, acidification, etc. The data with which several European workers have attempted to substantiate the idea of a two-stage thrombin-fibrinogen reaction with an intermediary "profibrin" (allegedly partly "denatured") have been reanalyzed with controls which lead us to very different conclusions, viz. (1) denaturation and fibrin formation are independent; (2) partial denaturation is "fibrinoplastic" (see above); and (3) conditions of strong salinity and acid pH (5.1) usually do not completely prevent the thrombin-fibrinogen reaction but merely prolong the "latent" phase and lessen the time required for completion of essentially the same reaction (fibrin polymerization) when more favorable clotting conditions are restored. Thus, our experiments advance the modern concepts concerning the coagulation mechanisms along lines that, for the most part, agree with those of the Harvard physical chemists, and we oppose the European views concerning a two-stage reaction, "profibrin," and "the denaturase theory" of clotting.  相似文献   

7.
Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.  相似文献   

8.
The engineering of blood vessels that could ensure efficient transport of various nutrients and metabolites is a challenge in tissue engineering. The creation of cell-seeded bioconstructs using modified natural polymers, in particular, PEGylated fibrin is under investigation, which will help overcome this problem. Therefore, the purpose of this study was to determine the optimal ratio of the hydrogel components of modified fibrin to provide favorable conditions for the vascular development of endothelial and mesenchymal stem cell coculture. We have shown that PEGylated fibrin gels are capable of maintaining three-dimensional growth of HUVEC and hASC cells. Hydrogel with a filamentous microporous structure obtained from PEGylated 5: 1 fibrinogen and thrombin at a concentration of 0.2 U per 1 mg ensured optimal conditions for spreading, growth, and development of cocultured cells as well as the expression of proteins involved in angiogenesis.  相似文献   

9.
ABSTRACT: BACKGROUND: Fibrin gels are a promising biomaterial for tissue engineering. However, current fabrication methods are time intensive with inherent variation. There is a pressing need to develop new and consistent approaches for producing fibrin-based hydrogels for examination. RESULTS: We developed a high throughput method for creating fibrin gels using molds fabricated from polydimethylsiloxane (PDMS). Fibrin gels were produced by adding solutions of fibrinogen and thrombin to cylindrical defects in a PDMS sheet. Undisturbed gels were collected by removing the sheet, and fibrin gels were characterized. The characteristics of resulting gels were compared to published data by measuring compressive stiffness and osteogenic response of entrapped human mesenchymal stem cells (MSCs). Gels exhibited compressive moduli nearly identical to our previously reported fabrication method. Trends in alkaline phosphatase activity, an early marker of osteogenic differentiation in MSCs, were also consistent with previous data. CONCLUSIONS: These findings demonstrate a streamlined approach to fibrin gel production that drastically reduces the time required to make fibrin gels, while also reducing variability between gel batches. This fabrication technique provides a valuable tool for generating large numbers of gels in a cost-effective manner.  相似文献   

10.
Fibrin is a natural biopolymer with many interesting properties, such as biocompatibility, bioresorbability, ease of processing, ability to be tailored to modify the conditions of polymerization, and potential for incorporation of both cells and cell mediators. Moreover, the fibrin network has a nanometric fibrous structure, mimicking extracellular matrix, and it can also be used in autologous applications. Therefore, fibrin has found many applications in tissue engineering, combined with cells, growth factors, or drugs. Because a major limitation of cardiac cell therapy is low cell engraftment, the use of biodegradable scaffolds for specific homing and in situ cell retention is desirable. Thus, fibrin-based injectable cardiac tissue engineering may enhance cell therapy efficacy. Fibrin-based biomaterials can also be used for engineering heart valves or cardiac patches. The aim of this review is to show cardiac bioengineering uses of fibrin, both as a cell delivery vehicle and as an implantable biomaterial.  相似文献   

11.
Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the fibrinogen solution to remove citrates that inhibit polymerization. These detailed methods rely on fibrinogen concentrations determined to be optimal for embryonic and induced pluripotent stem cell culture. Other groups have further investigated fibrin scaffolds for a wide range of cell types and applications - demonstrating the versatility of this approach.  相似文献   

12.
Fibrin clot formation is a proteolytic cascade of events with thrombin and plasmin identified as the main proteases cleaving fibrinogen precursor, and the fibrin polymer, respectively. Other proteases may be involved directly in fibrin(ogen) cleavage, clot formation, and resolution, or in the degradation of fibrin‐based scaffolds emerging as useful tools for tissue engineered constructs. Here, cysteine cathepsins are investigated for their putative ability to hydrolyze fibrinogen, since they are potent proteases, first identified in lysosomal protein degradation and known to participate in extracellular proteolysis. To further explore this, we used two independent computational technqiues, molecular docking and bioinformatics sequence analysis (PACMANS), to predict potential binding interactions and sites of hydrolysis between cathepsins K, L, and S and fibrinogen. By comparing the results from these two objective, computational methods, it was determined that cathepsins K, L, and S do bind and cleave fibrinogen α, β, and γ chains at similar and unique sites. These differences were visualized experimentally by the unique cleaved fibrinogen banding patterns after incubation with each of the cathepsins, separately. In conclusion, human cysteine cathepsins K, L, and S are a new class of proteases that should be considered during fibrin(ogen) degradation studies both for disease processes where coagulation is a concern, and also in the implementation and design of bioengineered systems.  相似文献   

13.
The effect of plasmin-derived fibrin(ogen) degradation products on alpha-thrombin cleavage of plasma Factor XIII was studied to identify the fibrin polymer structure that promotes Factor XIIIa formation. Fibrin polymers derived from fibrinogen and Fragment X enhanced the rate of thrombin cleavage of plasma Factor XIII in plasma or buffered solutions. The concentrations of fibrinogen and Fragment X that promoted half-maximal rates of Factor XIIIa formation were 5 and 40 micrograms/ml, respectively. Fragments Y, D, E, D-dimer, and photooxidized fibrinogen did not enhance thrombin cleavage of Factor XIII. Although purified Fragment D1 inhibited fibrin gelation, the soluble protofibrils promoted thrombin activation of Factor XIII. Noncrosslinked fibrin fibers failed to enhance thrombin cleavage of Factor XIII. In conclusion, soluble fibrin oligomers function to promote thrombin cleavage of plasma Factor XIII during blood clotting.  相似文献   

14.
The current study has developed an innovative procedure to generate ex novo fat tissue by culturing adipocytes from human fat tissue mesenchymal stem cells (hFTMSCs) on fibrin gel sheet towards applications in medicine and cosmetology. Fibrin gel has been obtained by combining two components fibrinogen and thrombin collected by human peripheral blood. By this procedure it was possible to generate blocks of fibrin gel containing adipocytes within the gel that show similar features and consistency to human fat tissue mass. Results were assessed by histological staining methods, fluorescent immune-histochemistry staining as well photos by scanning electron microscopy (SEM) to demonstrate the adhesion and growth of cells in the fibrin gel. This result opens a real possibility for future clinical applications in the treatment of reconstructive and regenerative medicine where the use of stem cell may eventually be a unique solution or in the field of aesthetic medicine where autograft fat stem cells may grant for a safer and better outcome with long lasting results.  相似文献   

15.
Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5.A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9.Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14.Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS2.  相似文献   

16.
《Biophysical journal》2023,122(4):697-712
During clotting under flow, thrombin rapidly generates fibrin, whereas fibrin potently sequesters thrombin. This co-regulation was studied using microfluidic whole blood clotting on collagen/tissue factor, followed by buffer wash, and a start/stop cycling flow assay using the thrombin fluorogenic substrate, Boc-Val-Pro-Arg-AMC. After 3 min of clotting (100 s?1) and 5 min of buffer wash, non-elutable thrombin activity was easily detected during cycles of flow cessation. Non-elutable thrombin was similarly detected in plasma clots or arterial whole blood clots (1000 s?1). This thrombin activity was ablated by Phe-Pro-Arg-chloromethylketone (PPACK), apixaban, or Gly-Pro-Arg-Pro to inhibit fibrin. Reaction-diffusion simulations predicted 108 nM thrombin within the clot. Heparin addition to the start/stop assay had little effect on fibrin-bound thrombin, whereas addition of heparin-antithrombin (AT) required over 6 min to inhibit the thrombin, indicating a substantial diffusion limitation. In contrast, heparin-AT rapidly inhibited thrombin within microfluidic plasma clots, indicating marked differences in fibrin structure and functionality between plasma clots and whole blood clots. Addition of GPVI-Fab to blood before venous or arterial clotting (200 or 1000 s?1) markedly reduced fibrin-bound thrombin, whereas GPVI-Fab addition after 90 s of clotting had no effect. Perfusion of AF647-fibrinogen over washed fluorescein isothiocyanate (FITC)-fibrin clots resulted in an intense red layer around, but not within, the original FITC-fibrin. Similarly, introduction of plasma/AF647-fibrinogen generated substantial red fibrin masses that did not penetrate the original green clots, demonstrating that fibrin cannot be re-clotted with fibrinogen. Overall, thrombin within fibrin is non-elutable, easily accessed by peptides, slowly accessed by average-sized proteins (heparin/AT), and not accessible to fresh fibrinogen.  相似文献   

17.
The fibrin polymers formed in solution during the earliest phase of the fibrinogen–fibrin conversion are shown to be stable soluble molecules at pH7.4 and 0.15m- or 0.3m-NaCl. The various sequential soluble fibrin polymers produced from the fibrinogen–thrombin reaction can be observed by gel chromatography and can be isolated for characterization. The mechanism of fibrin polymerization proposed from the present studies suggests that the initial event is the thrombin activation at only one of the Aα-chains in fibrinogen. The resulting highly reactive intermediate is the true fibrin monomer and it rapidly, and irreversibly, self-associates to form the stable fibrin dimer (s20.w=12S). Fibrin dimer possesses the N-terminal pattern alanine/glycine/tyrosine (1:1:2) per 340000 molecular weight, and possesses the chain structure [(α)Aα)(Bβ)2(γ)2]2. The fibrin dimer is a soluble inert molecule, but additional thrombin activation of its remaining intact Aα-chains leads to new associations into larger inert soluble fibrin polymers. In this manner progressively larger fibrin oligomers are constructed with thrombin continually in control of the process because of the necessity to repeatedly re-activate the various fibrin polymers in solution. The inert character of the soluble fibrin polymers can be explained by the reciprocal alignment of the associating molecules, which mutually consumes their active surfaces and leaves an intact Aα-chain at either end of each fibrin oligomer. The soluble fibrin polymers will proceed to further association only if thrombin activates these remaining Aα-chains, otherwise the fibrin molecules are stable indefinitely. The intermolecular associations within the soluble fibrin polymers are essentially irreversible under these nearly physiological conditions. However, the bonding is not covalent. This mechanism accounts for the clinical observations of stable fibrinogen-derived polymers in the plasma from patients undergoing thrombotic processes. Since it is shown that the intermediate fibrin polymers, themselves, are stable soluble molecules, it is no longer necessary, nor warranted, to invoke hypothetical `fibrinogen–fibrin complexes' to explain observations of fibrin solubility.  相似文献   

18.
Fibrin derived from fibrinogen after thrombin cleavage plays an essential role in forming blood clots. Fibrin as well as fibrinogen is also involved in the induction of platelet aggregation, leukocyte cell adhesion and phagocytosis. An additional biological role of fibrin and fibrinogen is presented in this study. One of the proteolytic peptides of fibrin/fibrinogen, fragment E, and not fragment D, was able to stimulate rat peritoneal macrophages to express interleukin-6 (IL-6). The stimulation of fibrin/fibrinogen fragment E on macrophages appeared to work in a dose- and time-dependent manner. Adherent fibrin fragment E was able to stimulate IL-6 expression as well as IL-6 protein production. The effect of fibrin fragment E was inhibited by the addition of an excess amount of GPRP tetrapeptide, but not by GHRP, which are the amino acids derived from the amino terminus of fibrin alpha and beta chains, respectively. These results suggest that fibrin as well as fibrinogen function as a stimulator to macrophages, and leukocyte integrin p150,95 (CD11c/ CD18), not Mac-I (CD11b/CD18), is involved in mediating fibrin stimulatory activity in macrophages.  相似文献   

19.
Interactions which determine the rate of conversion of fibrinogen into monomer fibrin and the retention of monomer fibrin in a noncompactible form through interaction with residual fibrinogen (solution stabilization) were examined through the kinetics of formation of equilibrium compactible network at pH 7 and ionic strength 0.15. For studies of conversion, reactions with thrombin were at 29 or 2 °C, hirudin was added at successive times to inhibit thrombin, and compactible network was equilibrated at 2 °C, where solution stabilization is negligible. A substrate dependency of initial rate is interpreted on the basis of inactive complex formation between thrombin and both fibrinogen and monomer fibrin. At 29 or 2 °C specific rate constants are 32 or 2.9 × 106 liter/mol, and association constants for inactive complex formation are 5.2 or 2.0 × 105 liter/mol. The second peptide-A is removed from fibrinogen ~ 40-fold as rapidly as the first.With equilibration at 29 °C, compactible network does not appear until the solution stabilization ratio of residual fibrinogen/monomer fibrin is four. Thereafter, increasing amounts of compactible network appear. However, the stabilization ratio progressively decreases to approximately two, a situation which indicates the complexity of the stabilization mechanism.The thrombin-hirudin association constant is estimated to be 4.9 or 17 × 1011 liter/mol at 29 or 2 °C.  相似文献   

20.
1. Improved methods for the purification of lamprey thrombin and fibrinogen are presented. 2. Lamprey thrombin releases two fibrinopeptides from lamprey fibrinogen during the transformation into fibrin. Bovine thrombin releases only one of these, a peptide referred to as fibrinopeptide B. The differences in the by-products of fibrin formation are reflected in the different N-terminal amino acid compositions of the two types of fibrin. 3. The fibrinopeptide that is not removed from the lamprey fibrinogen by bovine thrombin can subsequently be released by treatment of that fibrin with lamprey thrombin. 4. Under the conditions used, lamprey thrombin releases both fibrinopeptides at about the same rate. 5. The differences in interaction among these pairs of related proteins are extreme manifestations of the phenomenon loosely referred to as `species specificity'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号