首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program.  相似文献   

2.
Denitrovibrio acetiphilus Myhr and Torsvik 2000 is the type species of the genus Denitrovibrio in the bacterial family Deferribacteraceae. It is of phylogenetic interest because there are only six genera described in the family Deferribacteraceae. D. acetiphilus was isolated as a representative of a population reducing nitrate to ammonia in a laboratory column simulating the conditions in off-shore oil recovery fields. When nitrate was added to this column undesirable hydrogen sulfide production was stopped because the sulfate reducing populations were superseded by these nitrate reducing bacteria. Here we describe the features of this marine, mesophilic, obligately anaerobic organism respiring by nitrate reduction, together with the complete genome sequence, and annotation. This is the second complete genome sequence of the order Deferribacterales and the class Deferribacteres, which is the sole class in the phylum Deferribacteres. The 3,222,077 bp genome with its 3,034 protein-coding and 51 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

3.
The successful acclimation of eurhyhaline fishes from seawater to freshwater requires the gills to stop actively secreting ions and start actively absorbing ions. Gill Na(+),K(+)-ATPase is known to be an integral part of the active ion secretion model of marine fishes, but its importance in the active ion uptake model of freshwater fishes is less clear. This study, conducted in the high Arctic, examines gill Na(+),K(+)-ATPase regulation in wild anadromous arctic char returning to freshwater from the ocean. Gill Na(+),K(+)-ATPase activity, protein expression, and mRNA expression of Na(+),K(+)-ATPase isoforms alpha 1a and alpha 1b were monitored in arctic char at three points along their migration route to and from Somerset Island, Nunavut, Canada: out at sea (Whaler's Point), in seawater near the river mouth (Nat's Camp), and after entering the Union River. Arctic char collected from the Union River had more than twofold greater gill Na(+),K(+)-ATPase activity. This was associated with a significant increase (threefold) in Na(+),K(+)-ATPase isoform alpha 1a mRNA expression and a significant increase in plasma sodium and osmolality levels compared with seawater char. Compared with char sampled from Whaler's Point, Na(+),K(+)-ATPase isoform alpha 1b mRNA expression was decreased by approximately 50% in char sampled at Nat's Camp and the Union River. These results suggest that the upregulation of gill Na(+),K(+)-ATPase activity is involved in freshwater acclimation of arctic char and implicate a role for Na(+),K(+)-ATPase isoform alpha 1a in this process. In addition, we discuss evidence that arctic char go through a preparatory phase, or "reverse smoltification," before entering freshwater.  相似文献   

4.
Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome sequencing because of its isolated phylogenetic location, as a distant next neighbor of the genus Desulfurella. Strain MH(2) (T) is the first type strain from the order Desulfurellales with a completely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein-coding and 57 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

5.
To examine the distribution of the Na(+)-translocating NADH-quinone reductase (Na(+)-NQR) among marine bacteria, we developed a simple screening method for the detection of this enzyme. By reference to the homologous sequences of the Na(+)-NQR operons from Vibrio alginolyticus and Haemophilus influenzae, a pair of primers was designed for amplification of a part of the sixth ORF (nqr6) of the Na(+)-NQR operon. When PCR was performed using genomic DNA from 13 marine bacteria, a 0.9-kbp fragment corresponding to nqr6 was amplified in 10 strains. Although there were three PCR-negative strains phylogenetically, based on the sequence of the 16S rRNA, these were placed far from the PCR-positive strains. No product was observed in the case of nonmarine bacteria. The nucleotide and predicted amino acid sequences of nqr6 were highly conserved among the PCR-positive marine bacteria. A phylogenetic analysis of marine bacteria, based on nqr6 sequencing, was performed.  相似文献   

6.
Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. Kytococcus sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

7.
Strain HIMB100 is a planktonic marine bacterium in the class Alphaproteobacteria. This strain is of interest because it is one of the first known isolates from a globally ubiquitous clade of marine bacteria known as SAR116 within the family Rhodospirillaceae. Here we describe preliminary features of the organism, together with the draft genome sequence and annotation. This is the second genome sequence of a member of the SAR116 clade. The 2,458,945 bp genome contains 2,334 protein-coding and 42 RNA genes.  相似文献   

8.
Rhodothermus marinus Alfredsson et al. 1995 is the type species of the genus and is of phylogenetic interest because the Rhodothermaceae represent the deepest lineage in the phylum Bacteroidetes. R. marinus R-10(T) is a Gram-negative, non-motile, non-spore-forming bacterium isolated from marine hot springs off the coast of Iceland. Strain R-10(T) is strictly aerobic and requires slightly halophilic conditions for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Rhodothermus, and only the second sequence from members of the family Rhodothermaceae. The 3,386,737 bp genome (including a 125 kb plasmid) with its 2914 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

9.
Polynucleobacter necessarius subsp. asymbioticus strain QLW-P1DMWA-1(T) is a planktonic freshwater bacterium affiliated with the family Burkholderiaceae (class Betaproteobacteria). This strain is of interest because it represents a subspecies with cosmopolitan and ubiquitous distribution in standing freshwater systems. The 16S-23S ITS genotype represented by the sequenced strain comprised on average more than 10% of bacterioplankton in its home habitat. While all strains of the subspecies P. necessarius asymbioticus are free-living freshwater bacteria, strains belonging to the only other subspecies, P. necessarius subsp. necessarius are obligate endosymbionts of the ciliate Euplotes aediculatus. The two subspecies of P. necessarius are the instances of two closely related subspecies that differ in their lifestyle (free-living vs. obligate endosymbiont), and they are the only members of the genus Polynucleobacter with completely sequenced genomes. Here we describe the features of P. necessarius subsp. asymbioticus, together with the complete genome sequence and annotation. The 2,159,490 bp long chromosome with a total of 2,088 protein-coding and 48 RNA genes is the first completed genome sequence of the genus Polynucleobacter to be published and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2006.  相似文献   

10.
Syntrophobotulus glycolicus Friedrich et al. 1996 is currently the only member of the genus Syntrophobotulus within the family Peptococcaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of tree of life. When grown in pure culture with glyoxylate as carbon source the organism utilizes glyoxylate through fermentative oxidation, whereas, when grown in syntrophic co-culture with homoacetogenic or methanogenic bacteria, it is able to oxidize glycolate to carbon dioxide and hydrogen. No other organic or inorganic carbon source is utilized by S. glycolicus. The subdivision of the family Peptococcaceae into genera does not reflect the natural relationships, particularly regarding the genera most closely related to Syntrophobotulus. Both Desulfotomaculum and Pelotomaculum are paraphyletic assemblages, and the taxonomic classification is in significant conflict with the 16S rRNA data. S. glycolicus is already the ninth member of the family Peptococcaceae with a completely sequenced and publicly available genome. The 3,406,739 bp long genome with its 3,370 protein-coding and 69 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

11.
Saprospira grandis Gross 1911 is a member of the Saprospiraceae, a family in the class 'Sphingobacteria' that remains poorly characterized at the genomic level. The species is known for preying on other marine bacteria via 'ixotrophy'. S. grandis strain Sa g1 was isolated from decaying crab carapace in France and was selected for genome sequencing because of its isolated location in the tree of life. Only one type strain genome has been published so far from the Saprospiraceae, while the sequence of strain Sa g1 represents the second genome to be published from a non-type strain of S. grandis. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,495,250 bp long Improved-High-Quality draft of the genome with its 3,536 protein-coding and 62 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

12.
The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacteria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. baltica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacterium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 protein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008.  相似文献   

13.
FXYD proteins are a group of short single-span transmembrane proteins that interact with the Na(+)/K(+) ATPase and modulate its kinetic properties. This study characterizes intracellular trafficking of two FXYD family members, FXYD1 (phospholemman (PLM)) and FXYD7. Surface expression of PLM in Xenopus oocytes requires coexpression with the Na(+)/K(+) ATPase. On the other hand, the Na(+)/Ca(2+) exchanger, another PLM-interacting protein could not drive it to the cell surface. The Na(+)/K(+) ATPase-dependent surface expression of PLM could be facilitated by either a phosphorylation-mimicking mutation at Thr-69 or a truncation of three terminal arginine residues. Unlike PLM, FXYD7 could translocate to the cell surface of Xenopus oocytes independently of the coexpression of α1β1 Na(+)/K(+) ATPase. The Na(+)/K(+) ATPase-independent membrane translocation of FXYD7 requires O-glycosylation of at least two of three conserved threonines in its ectodomain. Subsequent experiments in mammalian cells confirmed the role of conserved extracellular threonine residues and demonstrated that FXYD7 protein, in which these have been mutated to alanine, is trapped in the endoplasmic reticulum and Golgi apparatus.  相似文献   

14.
In terms of lifestyle, free-living bacteria are classified as either oligotrophic/specialist or opportunist/generalist. Heterogeneous marine environments such as coastal waters favour the establishment of marine generalist bacteria, which code for a large pool of functions. This is basically foreseen to cope with the heterogeneity of organic matter supplied to these systems. Nevertheless, it is not known what fraction of a generalist proteome is needed for house-keeping functions or what fraction is modified to cope with environmental changes. Here, we used high-throughput proteomics to define the proteome of Ruegeria pomeroyi DSS-3, a model marine generalist bacterium of the Roseobacter clade. We evaluated its genome expression under several natural environmental conditions, revealing the versatility of the bacterium to adapt to anthropogenic influence, poor nutrient concentrations or the presence of the natural microbial community. We also assayed 30 different laboratory incubations to increase proteome coverage and to dig further into the functional genomics of the bacterium. We established its core proteome and the proteome devoted to adaptation to general cellular physiological variations (almost 50%). We suggest that the other half of its theoretical proteome is the opportunist genetic pool devoted exclusively to very specific environmental conditions.  相似文献   

15.
Brachyspira murdochii Stanton et al. 1992 is a non-pathogenic, host-associated spirochete of the family Brachyspiraceae. Initially isolated from the intestinal content of a healthy swine, the 'group B spirochaetes' were first described as Serpulina murdochii. Members of the family Brachyspiraceae are of great phylogenetic interest because of the extremely isolated location of this family within the phylum 'Spirochaetes'. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a type strain of a member of the family Brachyspiraceae and only the second genome sequence from a member of the genus Brachyspira. The 3,241,804 bp long genome with its 2,893 protein-coding and 40 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

16.
Aminobacterium colombiense Baena et al. 1999 is the type species of the genus Aminobacterium. This genus is of large interest because of its isolated phylogenetic location in the family Synergistaceae, its strictly anaerobic lifestyle, and its ability to grow by fermentation of a limited range of amino acids but not carbohydrates. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the family Synergistaceae and the first genome sequence of a member of the genus Aminobacterium. The 1,980,592 bp long genome with its 1,914 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

17.
Time constants of slow inactivation were investigated in NH(2)-terminal deleted Shaker potassium channels using macro-patch recordings from Xenopus oocytes. Slow inactivation is voltage insensitive in physiological solutions or in simple experimental solutions such as K(+)(o)//K(+)(i) or Na(+)(o)//K(+)(i). However, when [Na(+)](i) is increased while [K(+)](i) is reduced, voltage sensitivity appears in the slow inactivation rates at positive potentials. In such solutions, the I-V curves show a region of negative slope conductance between approximately 0 and +60 mV, with strongly increased outward current at more positive voltages, yielding an N-shaped curvature. These changes in peak outward currents are associated with marked changes in the dominant slow inactivation time constant from approximately 1.5 s at potentials less than approximately +60 mV to approximately 30 ms at more than +150 mV. Since slow inactivation in Shaker channels is extremely sensitive to the concentrations and species of permeant ions, more rapid entry into slow inactivated state(s) might indicate decreased K(+) permeation and increased Na(+) permeation at positive potentials. However, the N-shaped I-V curve becomes fully developed before the onset of significant slow inactivation, indicating that this N-shaped I-V does not arise from permeability changes associated with entry into slow inactivated states. Thus, changes in the relative contributions of K(+) and Na(+) ions to outward currents could arise either: (a) from depletions of [K(+)](i) sufficient to permit increased Na(+) permeation, or (b) from voltage-dependent changes in K(+) and Na(+) permeabilities. Our results rule out the first of these mechanisms. Furthermore, effects of changing [K(+)](i) and [K(+)](o) on ramp I-V waveforms suggest that applied potential directly affects relative permeation by K(+) and Na(+) ions. Therefore, we conclude that the voltage sensitivity of slow inactivation rates arises indirectly as a result of voltage-dependent changes in the ion occupancy of these channels, and demonstrate that simple barrier models can predict such voltage-dependent changes in relative permeabilities.  相似文献   

18.
Anaerococcus prevotii (Foubert and Douglas 1948) Ezaki et al. 2001 is the type species of the genus, and is of phylogenetic interest because of its arguable assignment to the provisionally arranged family 'Peptostreptococcaceae'. A. prevotii is an obligate anaerobic coccus, usually arranged in clumps or tetrads. The strain, whose genome is described here, was originally isolated from human plasma; other strains of the species were also isolated from clinical specimen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus. Next to Finegoldia magna, A. prevotii is only the second species from the family 'Peptostreptococcaceae' for which a complete genome sequence is described. The 1,998,633 bp long genome (chromosome and one plasmid) with its 1852 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

19.
Desulfobacca acetoxidans Elferink et al. 1999 is the type species of the genus Desulfobacca, which belongs to the family Syntrophaceae in the class Deltaproteobacteria. The species was first observed in a study on the competition of sulfate-reducers and acetoclastic methanogens for acetate in sludge. D. acetoxidans is considered to be the most abundant acetate-degrading sulfate reducer in sludge. It is of interest due to its isolated phylogenetic location in the 16S rRNA-based tree of life. This is the second completed genome sequence of a member of the family Syntrophaceae to be published and only the third genome sequence from a member of the order Syntrophobacterales. The 3,282,536 bp long genome with its 2,969 protein-coding and 54 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

20.
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号