首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sympathetic and enteric divisions of the autonomic nervous system are interactive in the determination of the functional state of the digestive tract. Activation of the sympathetic input suppresses digestive function primarily through release of norepinephrine at its synaptic interface with the enteric nervous system. The enteric nervous system functions like an independent minibrain in the initiation of the various programmed patterns of digestive tract behavior and moment-to-moment control as the neural microcircuits carry-out the behavioral patterns. Most of the postganglionic projections from sympathetic prevertebral ganglia terminate as synapses in myenteric and submucous ganglia of the enteric nervous system. Two primary actions of the sympathetic input are responsible for suppression of motility and secretion. First is presynaptic inhibitory action of norepinephrine to suppress release of neurotransmitters at fast and slow excitatory synapses in the enteric neural microcircuits and this effectively shuts-down the circuit. Second is inhibitory synaptic input to submucosal secretomotor neurons to the intestinal crypts. The alpha, adrenergic receptor subtype mediates both actions. Axons of secretomotor neurons to the crypts bifurcate to innervate and dilate the submucosal vasculature. Dilitation of the vasculature increases blood flow in support of increased secretion. Sympathetic inhibitory input to the secretomotor neurons therefore suppresses both secretion and blood flow. Activation of the sympathetic nervous system cannot explain the symptoms of secretory diarrhea and abdominal discomfort associated with psychologic and other forms of stress. Current evidence suggests that brain to mast cell connections account for stress-induced gastrointestinal symptoms. Degranulation of enteric mast cells by neural inputs releases inflammatory mediators that enhance excitability of intestinal secretomotor neurons while suppressing the release of norepinephrine from postganglionic sympathetic axons. This is postulated to underlie the secretory diarrhea and abdominal discomfort associated with stress.  相似文献   

2.
The gastrointestinal tract is innervated by extrinsic noradrenergic nerves which regulate various digestive functions, including mucosal secretions, bowel propulsion and gut sensations, via activation of alpha2-adrenoceptors. These receptors are mostly involved in the prejunctional modulation of enteric neurotransmission, but they act also at extra-neural postjunctional sites. Alpha2-adrenoceptor population consists of distinct subtypes, designated as alpha2A, alpha2B and alpha2C, endowed with different physiological and pharmacological properties, and the attempts to classify alpha2-adrenoceptors at gastrointestinal level have indicated a large predominance of alpha2A subtypes. Studies in humans have shown a favourable influence of alpha2-adrenoceptor activation on colonic tone and sensation, and there is clinical evidence indicating that alpha2-agonists can improve intestinal functions and induce a satisfactory relief of symptoms in patients with irritable bowel syndrome. In addition, genetic investigations have highlighted significant associations of alpha2-adrenoceptor gene polymorphisms with constipation and somatic symptoms in functional disorders of lower digestive tract. Post-operative ileus is a common surgical complication characterized by severe alteration of gut motility, resulting mainly from neurogenic and inflammatory mechanisms. Experiments in models of post-operative ileus have demonstrated an intense expression of alpha2-adrenoceptors in monocytes recruited into the intestinal muscularis, and provided consistent evidence that these receptors promote post-operative gut dysfunctions by hampering enteric neurotransmission and contributing to local inflammatory reaction. Changes in the enteric nervous system are being increasingly recognized also as major determinants of digestive symptoms associated with bowel inflammation. In this regard, studies based on functional and molecular approaches concur in suggesting that the expression of enteric alpha2-adrenoceptors is up-regulated in the presence of intestinal inflammation, and that alpha2-mediated mechanisms are responsible for gut motor alterations occurring at both inflamed and non-inflamed sites. The present review discusses pathophysiological implications of enteric alpha2-adrenoceptors, in the attempt to highlight potential therapeutic applications for drugs targeted on these receptors.  相似文献   

3.
Summary The digestive tract of the cephalochordate Branchiostoma lanceolatum was investigated with regard to occurrence and distribution of endocrine cells. By the use of the peroxidase-antiperoxidase (PAP) technique, cells in the gut epithelium reacting with antisera against 8 different mammalian polypeptide hormones were localized. Positive reactions were obtained with antisera against the four mammalian islet hormones (insulin, glucagon, pancreatic polypeptide, somatostatin) and against secretin, vasoactive intestinal polypeptide, pentagastrin and neurotensin. No immunoreactivity was found with antisera against members of the lipotropin family (ACTH, met-enkephalin, -endorphin), against big-gastrin, cholecystokinin, substance P and moulin. The exact mapping of the different polypeptide immunoreactive cells throughout the digestive tract of Branchiostoma lanceolatum is presented.  相似文献   

4.
This study was carried out on the sea bass (Dicentrarchus labrax) to follow, during development, the appearance and distribution of substance P (SP) and vasoactive intestinal peptide (VIP), which act on gut motility. The results suggest that SP and VIP play an important role as neuromodulators, influencing the motility of the digestive tract starting from the early stages of gut development, even prior to exotrophic feeding. In the peptidergic nervous system, the appearance of immunoreactivity to SP began at the rectum and followed a distal to proximal gradient, whereas for VIP, it began proximally and progressed along a proximal to distal gradient. The two peptides also appeared in gut epithelial cells. In some regions, all the cells were positive. From this distribution of positive cells, we conclude that these peptides may also have other roles, besides being neurotransmitters in the enteric nervous system and hormones of the gastro-entero-pancreatic system. VIP and SP might have paracrine and/or autocrine activity in the physiological maturation of the gut epithelium, as it has already been hypothesised for other peptides.  相似文献   

5.
Summary The distribution of different hydrolytic enzymes and the localization of the hormones which regulate glucose metabolism during development of the digestive tract of the sea bream, Sparus aurata L., were studied. The yolk sac contains trypsin, glucose-6-phosphatase, ATPases and acid and alkaline phosphatase activities. Positive insulin, glucagon and somatostatin cells were observed in the pancreas and in the lumen of the intestinal tract during endogenous feeding. From hatching until 3 days later, the digestive tract of sea bream larvae shows no enzymatic activities. During exogenous feeding, the activities of the phosphatases and trypsin generally increase, as do the amounts of the hydrolytic enzymes and trypsin, as well as the pancreatic and intestinal hormones. The enzymatic activities gradually decrease from the anterior part towards the posterior part of the digestive tract.  相似文献   

6.
The effects of intracerebroventricular (ICV) vs. intravenous (IV) injection of neurotensin, substance P and calcitonin on intestinal myoelectrical activity were examined in fed rats. ICV administered neurotensin and calcitonin restored the ‘fasted’ pattern of intestinal activity, i.e. the migrating myoelectric complex (MMC) at a dose as low as 12 and 0.2 pmol, respectively, whereas substance P only reduced significantly (P < 0.01) the duration of the postprandial pattern when injected ICV (48 pmol).Administered systemically at doses 100 times higher than the smallest active doses by the ICV route, calcitonin induced a fasted pattern, while neurotensin and substance P did not modify the fed pattern.The effects of ICV administration of neurotensin and calcitonin were abolished after vagotomy but the shortening effect of substance P on the duration of the postprandial pattern was still present.It is concluded that these three neuropeptides act centrally to control the pattern of intestinal motility in fed rats by shortening the ‘fed’ pattern for substance P and by restoring the MMC pattern for calcitonin and neurotensin, this last effect being mediated by the vagus.  相似文献   

7.
The effects of neurotensin (NT) and cholecystokinin (CCK) were studied on isolated crop-gizzard preparations of Lumbricus terrestris suspended in a smooth muscle organ bath. Changes in the amplitude and frequency of contractions associated with spontaneous motility were observed in response to neurotransmitters known to have an excitatory effect (acetylcholine) and an inhibitory effect (serotonin); and to the hormones NT and CCK, which in vertebrate models have both been shown to inhibit gastric motility. The overall contractile amplitude and frequency of crop-gizzard contractions were decreased in response to increasing concentrations of NT and CCK. In general, both hormone-induced responses were similar when compared at equal molar concentrations. Cholecystokinin, however, did exhibit a greater reduction in contractile frequency than NT. It is speculated that possible desensitization of earthworm NT-receptors to higher hormone concentrations resulted in a depressed maximal response in the concentration–response curve. Despite that possibility, the overall hormonal inhibition was statistically significant. These results infer that NT- and CCK-induced inhibition of crop-gizzard motility may have a modulatory role in the transport of nutrients and overall efficiency of worm metabolism.  相似文献   

8.
Immunoreactivity against vasoactive intestinal polypeptide (VIP), neurotensin (NT), substance P (SP), calcitonin gene-related peptide (CGRP), gastrin/cholecystokinin (GAS/CCK), somatostatin (SOM), serotonin (SER), and nitric oxide synthase (NOS) was investigated in the gastrointestinal tract of the urodele Ambystoma mexicanum, the axolotl, by the use of immunohistochemical techniques. The study also compares the distribution patterns and frequencies of the neurohormones, and NOS in neotenic and thyroxine-treated (metamorphosed) individuals. GAS/CCK, SP, NT, SOM, and SER immunoreactivities occurred in endocrine mucosal cells and VIP, SP, CGRP, NTSER, SER, and NOS immunoreactivities in the enteric nervous system. The GAS/CCK-immunoreactive (-IR) cells were restricted to the upper small intestine. NT-IR and SP-IR endocrine cells were found in the entire gastrointestinal tract and were most prominent in the distal large intestine. The density of the SOM-IR cells decreased from the stomach toward the large intestine. SER-IR endocrine cells were found throughout the gastrointestinal tract, with particularly high densities in the stomach and distal large intestine. The VIP-IR enteric nerve fibers were the most prominent ones, present in all layers of the entire gastrointestinal tract, and supplied the smooth muscle and the vasculature. The SER-IR fibers exhibited similar distribution patterns but were less numerous. Very few NT-IR but many SP-IR fibers were found in the muscle and submucosal layers. The NT-IR fibers mainly supplied blood vessels, while the SP-IR fibers were also in contact with the smooth muscle. In the muscle and submucosal layers, CGRP-IR fibers were associated to the vasculature; CGRP immunoreactivity occurred also in a minority of SP-IR fibers. NOS-IR nerve fibers were in contact with submucosal arteries but were the least frequent . After metamorphosis provoked by exogenous thyroxine, the number of SOM-IR endocrine cells in the stomach mucosa was increased as well as the density of VIP-IR, SER-IR, and SP-IR nerve fibers in the gastrointestinal tract. It is proposed that the observed increases may reflect refinements of the neurohormonal system after metamorphosis.  相似文献   

9.
F. J. Mi  ano  J. M. Peinado  R. D. Myers 《Peptides》1988,9(6):1381-1387
This investigation was undertaken in the unrestrained rat to determine the localized effect of neurotensin (NT) on the profile of release and turnover of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) within the hypothalamus. Following stereotaxic implantation of a permanent guide tube, artificial CSF was perfused in the hypothalamus of the freely moving animal by means of push-pull cannulae at a rate of 20 μl/min and for an interval of 5.0 min. After three 5.0 min control samples were collected, NT in a concentration of 0.1 μg/μl was perfused followed by additional CSF controls. Assay by HPLC-EC of each perfusate showed that when the rat was sated, NT evoked a significant increase in the release of DA and DOPAC from the hypothalamus as well as augmented NE turnover, as reflected by a significant efflux in MHPG. However, when the rat was fasted for 22 hr, the perfusion of NT reduced DA and DOPAC concentrations in the diencephalic perfusate significantly as well as levels of both MHPG and VMA. Under both sated and fasted conditions, NT failed to produce notable changes in the release of 5-HT or its metabolism to 5-HIAA. These findings thus reveal a functional interaction between NT and both of the catecholamine neurotransmitters within hypothalamic neurons, which is clearly dependent upon the nutritional status of the animal.  相似文献   

10.
Schistosoma mansoni infection induces severe gastrointestinal motility disturbances which are characterised by hyperactivity of intestinal muscle, abdominal pain, diarrhoea, vomiting and nausea. During schistosomiasis, the neuropeptide somatostatin is generated within inflammatory granulomas. However, somatostatin is also an important inhibitory modulator of gastrointestinal motility. In the present study, we have investigated the potential of somatostatin to reduce schistosomiasis-induced hyperactivity of gastrointestinal smooth muscle. Organ bath experiments were performed to study the contractility of isolated smooth muscle strips of intestine from control mice and from mice that were infected with S. mansoni for 2, 4, 8 and 16 weeks. Electrical field stimulation (0.5-8 Hz) of enteric nerves induced frequency-dependent neurogenic contractions of cholinergic origin in all regions of the small intestine. Somatostatin (0.1-1 microM) concentration-dependently inhibited the contractions to enteric nerve stimulation in the small intestine from uninfected control mice and from acutely S. mansoni infected mice (2 and 4 weeks of infection). After 8 weeks of infection with S. mansoni, this inhibitory effect of somatostatin was less pronounced and after 16 weeks of infection it was completely abolished. Histology demonstrated that chronic infection of mice with S. mansoni was associated with significant alterations in the musculature of the small intestine. These alterations may be associated with physiological changes in the responsiveness to somatostatin and suggest that the somatostatin neuroregulatory circuit of enteric neurotransmission in the small intestine is disturbed during chronic schistosomiasis mansoni.  相似文献   

11.
胃肠道是人体内最大的激素分泌器官,是调节肽即胃肠激素最丰富的来源。胃肠激素与胃肠功能有很大关系,它们与神经系统一起,共同调节消化器官的运动、分泌和吸收及其他多种功能。促生长素(Ghrelin)、降钙素基因相关肽(CGRP)和神经降压素(NT)是近年来新发现的胃肠激素中的代表。Ghrelin主要由胃组织产生,可以促进胃肠蠕动,还可促进胃酸分泌,这些作用是由迷走神经所介导的,ghrelin还具有对消化道粘膜的保护作用,此作用受多种方式调控。CGRP广泛分布于中枢和外周神经系统,有调节胃肠血流、胃肠分泌及胃肠运动等多种功能,目前学者普遍认为CGRP这些生物学效应的发挥是通过一氧化氮(NO)及前列腺素(PG)介导的。NT广泛分布于脑和胃肠道及其它组织中,由肠道N细胞分泌,能够抑制胃肠运动,对胃肠黏膜细胞具有保护作用,这些作用是迷走神经、调节肽等多种途径介导的。随着对这三种胃肠激素的深入了解,人们将对人体胃肠道疾病产生更加深刻的认识。本文就近年来对Ghrelin、CGRP、NT对胃肠作用的研究作一综述。  相似文献   

12.
肠神经胶质细胞分布于消化道黏膜层、黏膜下层和肌层,其具有广泛的异质性和可塑性。黏膜层最靠近肠腔,易受病原体侵袭和炎症影响,因此黏膜稳态备受关注。肠黏膜神经胶质细胞(mucosal enteric glial cells,mEGCs)与肠上皮细胞、血管内皮细胞、免疫细胞等非神经元细胞具有复杂的相互作用关系。从结构和功能的角度来看,mEGCs可能处于中心调控位置。最近研究不断揭示mEGCs的亚型和新功能,表明mEGCs在病理条件下存在功能改变。了解mEGCs如何引起黏膜功能障碍及其在疾病发展中的作用至关重要。本文将总结mEGCs在维持粘膜内环境稳定和调节炎症方面的作用。  相似文献   

13.
Neurotensin (NT) is a biologically active peptide found in specialized epithelial cells (N-cells) in the distal small intestine. In this study we tested the hypothesis that NT may be released by luminal secretagogues, i.e., cholera toxin, Escherichia coli heat-stable toxin and sodium deoxycholate. Cholera toxin elicited net fluid secretion in anesthetized cats. This secretion was accompanied by an increased release of NT-like immunoreactivity (NTLI) into the mesenteric vein when NTLI was measured with either a C-terminally or a N-terminally directed antibody. An increasing plasma NTLI concentration (N-terminally directed antibody) was recorded in the mesenteric vein and femoral artery in cholera experiments. These results indicate that cholera toxin releases NT from the small intestine. Since neurotensin causes intestinal fluid secretion at least in part via an activation of enteric nerves we propose that the N-cell functions as a 'receptor cell' which activates an intramural secretory reflex upon luminal stimulation by cholera toxin. This study does not support a similar role for NT in the secretion elicited by the heat stable toxin of Escherichia coli or by sodium deoxycholate since we were unable to demonstrate any intestinal release of NTLI after exposing the intestine to these secretory agents.  相似文献   

14.
In the last decades some reports reveal the neuropeptide neurotensin (NT) as an immune mediator in the Central Nervous System and in the gastrointestinal tract, however its effects on skin immunity were not identified. The present study investigates the effect of NT on signal transduction and on pro/anti-inflammatory function of skin dendritic cells. Furthermore, we investigated how neurotensin can modulate the inflammatory responses triggered by LPS in skin dendritic cells. We observed that fetal-skin dendritic cells (FSDCs) constitutively express NTR1 and NTR3 (neurotensin receptors) and that LPS treatment induces neurotensin expression. In addition, NT downregulated the activation of the inflammatory signaling pathways NF-κB and JNK, as well as, the expression of the cytokines IL-6, TNF-α, IL-10 and the vascular endothelial growth factor (VEGF), while the survival pathway ERK and epidermal growth factor (EGF) were upregulated. Simultaneous dendritic cells exposure to LPS and NT induced a similar cytokine profile to that one induced by NT alone. However, cells pre-treated with NT and then incubated with LPS, completely changed their cytokine profile, upregulating the cytokines tested, without changes on growth factor expression. Overall, our results could open new perspectives in the design of new therapies for skin diseases, like diabetic wound healing, where neuropeptide exposure seems to be beneficial.  相似文献   

15.
Studies were performed to determine whether the cyclic hexapeptide analog of somatostatin, cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe) II, could alter circulating levels of neurotensin (NT) and inhibit the release of NT from small intestine following the intraluminal perfusion of lipid and ETOH. The small intestine of anesthetized rats was perfused with 0.9% NaCl, 1mM ETOH, 100 mM ETOH or 1 mM oleic acid with and without the intravenous infusion of the somatostatin analog. Plasma samples collected from the superior mesenteric vein were extracted, chromatographed on HPLC and assayed with both C-terminal and N-terminal antisera to NT. The basal circulating levels of chromatographically and immunochemically identified NT observed during the perfusion of the small intestine with 0.9% NaCl were significantly lower (p less than 0.01) during the IV infusion of the somatostatin analog as compared to animals infused IV with saline. The 2-3 fold increase in plasma levels of NT observed with the intestinal perfusion of oleic acid and ETOH did not occur in animals simultaneously infused IV with the somatostatin analog. The somatostatin analog was also effective in decreasing the basal levels of NT metabolite NT(1-8) as well as inhibiting the increase in this metabolite that accompanies the stimulated release of NT.  相似文献   

16.
In the digestive tract, there is evidence for the presence of high amounts of endocannabinoids (anandamide and 2-arachidonylglycerol) and of mechanisms for endocannabinoid metabolism and possibly endocannabinoid uptake. Pharmacological studies have shown that anandamide inhibits excitatory transmission and peristalsis in the isolated guinea-pig ileum and reduces intestinal motility in the mouse in vivo; all these effects are mediated by CB(1) receptors, which are located on enteric nerves. Conversely, the selective CB(1) receptor antagonist SR141716A increased intestinal motility and this effect is likely due to the displacement of endocannabinoids rather than to its inverse agonist properties. Interestingly, inhibitory effects of anandamide via non-CB(1) receptors and stimulatory effects via vanilloid receptors have also been proposed.  相似文献   

17.
Summary The distribution of endocrine cells in the gastrointestinal tract of the house musk shrew, Suncus murinus (Family Soricidae, Order Insectivora) was studied immunohistochemically. The hormones investigated were gastrin, cholecystokinin (CCK), somatostatin, secretin, glucagon, gastric inhibitory polypeptide (GIP), motilin and neurotensin. In the gastric mucosa, gastrin and somatostatin cells were only found in the pyloric regions, and no other hormonal cell-types were observed. In the intestinal mucosa, the largest number of endocrine cells belonged to the gastrin and glucagon/glicentin cell-types, whereas CCK-33/39 and secretin cells were the least numerous. Numbers of other cell-types were intermediate between these two groups. The gastrin and GIP cells were mostly localized in the proximal portion of the intestine, decreasing in number towards the distal portion. The motilin and CCK-33/39 cells were restricted to the proximal half. The glucagon/glicentin and neurotensin cells were most abundant in the middle portion. The somatostatin and secretin cells, although only present in small numbers, were randomly distributed throughout the intestine. This characteristic distribution of gastrointestinal endocrine cells is discussed in comparison with the distribution patterns of other mammals.Dr. Munemitsu Hoshino, who was Professor of the Department of Pathology and directed this study, passed away on May 23rd 1988  相似文献   

18.
The peripheral plasma concentrations of immunoreactive motilin, pancreatic polypeptide (PP), somatostatin and gastrin were measured in 7 pigs fasted to 24 h and subsequently fed a standard meal. Plasma motilin peaked during the last part of phase II activity of the migrating myoelectric complex (MMC) sequence (25.2 +/- 2.3 pM), the lowest value being recorded during phase I (10.6 +/- 1.5 pM) after a 24 h fast. Plasma motilin remained at a low level during the digestive pattern of duodenal activity, no fluctuation occurring when the first postprandial MMC recurred. At variance analysis, gastrin and PP were not released phasically with MMC in the fasting state, while at autocovariance both peptides tended to fluctuate during the MMC sequence with positive and negative peaks at regular intervals along MMC cycles. No variation of plasma somatostatin was observed in the fasting animals. These findings argue against a major role of circulating PP, gastrin and somatostatin-like components in the control of fasted and post absorptive duodenal motility in pigs while the role of motilin remains equivocal.  相似文献   

19.
The peptide hormone neurotensin (NT) is found mainly in gut endocrine cells of the ileum, but has also been identified as a putative neurotransmitter in the central and peripheral nervous systems. It may have a dual role as a circulating gastrointestinal hormone and peripheral neurotransmitter. Its predominant effects are to reduce oesophageal sphincter tone, inhibit gastric secretion and emptying and inhibit intestinal motility, but stimulate intestinal and pancreatic exocrine secretion; NT-like immunoreactivity has been found in kidney and therefore NT may influence renal function. When infused i.v. in rabbits it causes antinatriuresis. We have studied its renal effects in 11 healthy males by i.v. infusion under conditions of altered dietary sodium. Postprandial circulating neurotensin levels were reproduced by infusion. There were no consistent systemic or renal haemodynamic effects. Plasma electrolytes and renin did not change. Only renal chloride excretion changed significantly, falling by ca. 30%, and recovering after infusion. There is no evidence for a specific renal tubular chloride transport mechanism, but coupled cotransport, Na+:K+:2CI-, may be hormonally regulated. NT might stimulate this process and contribute to the renal response to changes in dietary composition, especially sodium intake.  相似文献   

20.
C H McIntosh 《Life sciences》1985,37(22):2043-2058
Somatostatin-like immunoreactivity (SLI) has been found throughout the gastrointestinal tract in all species examined. In the stomach it is mainly present in endocrine-type D-cells whereas in the intestine there is also an extensive distribution in enteric neurones. In all regions of the gastrointestinal tract multiple forms of somatostatin exist. A precursor (prosomatostatin) has been partially sequenced, three forms with 20 (SS-20), 25 (SS-25) and 28 (SS-28) amino acids completely sequenced, and somatostatin-14 (SS-14) demonstrated by radioimmunoassay. Both SS-14 and SS-28 exert a wide range of actions on the gastrointestinal tract and there is strong supportive evidence for a role in the regulation of gastric acid and gastrin secretion, gastrointestinal motility and intestinal transport. Both in vivo and in vitro studies on the secretion of gastric SLI into the vasculature have shown that nutrients initiate the process but that subsequent events are regulated by a complex interplay between hormonal and neuronal pathways. GIP is one of the most potent hormonal secretagogues. In the stomach, acetylcholine, opioid peptides and substance P are probably involved in parasympathetic inhibitory pathways and gastrin releasing peptide in stimulatory pathways. The sympathetic nerves are also stimulatory. Regulation of secretion of intestinal SLI has not been so extensively studied. Although SLI is also found in the gastrointestinal lumen the significance is unclear. Despite these advances the exact route of delivery of somatostatin to its target organs is uncertain and paracrine, endocrine and neural pathways may all be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号