首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs), of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs) display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.  相似文献   

2.
Antiviral signaling through pattern recognition receptors   总被引:10,自引:0,他引:10  
Viral infection is detected by the host innate immune system. Innate immune cells such as dendritic cells and macrophages detect nucleic acids derived from viruses through pattern recognition receptors (PRRs). Viral recognition by PRRs initiates the activation of signaling pathways that lead to production of type I interferon and inflammatory cytokines, which are important for the elimination of viruses. Two types of PRRs that recognize viral nucleic acids, Toll-like receptors (TLR) and RIG-I-like RNA helicases (RLH), have been identified. Of the TLRs, TLR3 recognizes viral double-stranded (ds) RNA, TLR7 and human TLR8 identify viral single-stranded (ss) RNA and TLR9 detects viral DNA. TLRs are located in endosomal compartments, whereas RLH are present in the cytoplasm where they detect viral dsRNA or ssRNA. Here we review the role of TLRs and RLHs in the antiviral innate immune response.  相似文献   

3.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

4.
The antiviral innate immune response follows the detection of viral components by host pattern recognition receptors (PRRs). Two families of PRRs have emerged as key sensors of viral infection: Toll-like receptors (TLRs) and retinoic acid inducible gene-I like RNA helicases (RLHs). TLRs patrol the extracellular and endosomal compartments; signalling results in a type-1 interferon response and/or the production of pro-inflammatory cytokines. In contrast, RLHs survey the cytoplasm for the presence of viral double-stranded RNA. In the face of such host defence, viruses have developed strategies to evade TLR/RLH signalling. Such host-virus interactions provide the opportunity for manipulation of PRR signalling as a novel therapeutic approach.  相似文献   

5.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   

6.
Toll样受体介导的信号转导通路在对抗外来病原体的天然免疫应答中起重要作用。Toll样受体是一个天然模板识别受体家族,能识别固有性模板(微生物和哺乳动物所共有的病原相联的分子模板PAMPs)。Toll样受体通过巨噬细胞和其他免疫细胞来识别,其中TLR4识别内毒素、TLR2识别肽聚糖、TLR9识别细菌DNA、TLR5识别鞭毛蛋白、TLR3识别双链RNA等。本探讨了多种Toll受体家族成员在动物体内识别机理及功能,概述了其应用研究进展。  相似文献   

7.
Jones CL  Weiss DS 《PloS one》2011,6(6):e20609
BACKGROUND: Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1β. Some intracellular bacteria subvert the TLR response by rapidly escaping the phagosome and entering the cytosol. However, these bacteria may be recognized by the inflammasome, a multi-protein complex comprised of a sensor protein, ASC and the cysteine protease caspase-1. Inflammasome activation leads to release of the proinflammatory cytokines IL-1β and IL-18 and death of the infected cell, an important host defense that eliminates the pathogen's replicative niche. While TLRs and inflammasomes are critical for controlling bacterial infections, it is unknown whether these distinct host pathways cooperate to activate defenses against intracellular bacteria. METHODOLOGY/SIGNIFICANT FINDINGS: Using the intracellular bacterium Francisella novicida as a model, we show that TLR2(-/-) macrophages exhibited delayed inflammasome activation compared to wild-type macrophages as measured by inflammasome assembly, caspase-1 activation, cell death and IL-18 release. TLR2 also contributed to inflammasome activation in response to infection by the cytosolic bacterium Listeria monocytogenes. Components of the TLR2 signaling pathway, MyD88 and NF-κB, were required for rapid inflammasome activation. Furthermore, TLR2(-/-) mice exhibited lower levels of cell death, caspase-1 activation, and IL-18 production than wild-type mice upon F. novicida infection. CONCLUSIONS/SIGNIFICANCE: These results show that TLR2 is required for rapid inflammasome activation in response to infection by cytosolic bacterial pathogens. In addition to further characterizing the role of TLR2 in host defense, these findings broaden our understanding of how the host integrates signals from spatiotemporally separated PRRs to coordinate an innate response against intracellular bacteria.  相似文献   

8.
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.  相似文献   

9.
Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents.  相似文献   

10.
TLR9(Toll-likereceptor9)是一种微生物病原相关分子结构模式识别受体,TLR9能够识别CpG—ODN(胞嘧啶磷酸鸟甘-寡聚脱氧核苷酸),使病原相关受体在先天性免疫细胞上表达,并激活下游炎性通路。研究表明,TLR9在先天性免疫反应中产生了重要作用,如脓毒血症、自身免疫性疾病、刀豆体球蛋白A介导肝炎性肝脏损伤、炎性泡沫细胞形成、缺血再灌注损伤等,并且与多种致病因子相关联,如肝x受体、甲酰多肽受体、线粒体DNA等。  相似文献   

11.
模式识别受体(PRR)在宿主细胞识别与抵御微生物病原体中起到了重要作用。Toll样受体(TLR)是研究比较清楚的一类PRR,可以识别多种病原体成份,启动天然免疫反应。此外,近来发现了几类其他模式识别受体,如C型凝集素受体(CLR),核苷酸寡聚结合域(NOD)样受体(NLR)和视黄酸诱导基因I(RIG—I)样受体(RLR),表明机体的天然免疫反应受到多种机制的精密调控。本文着重综述TLR与其他PRR在识别病原体和介导天然免疫信号通路间的相互关系。  相似文献   

12.
Toll-like receptor pathways in the immune responses to mycobacteria   总被引:8,自引:0,他引:8  
The control of Mycobacterium tuberculosis infection depends on recognition of the pathogen and the activation of both the innate and adaptive immune responses. Toll-like receptors (TLR) were shown to play a critical role in the recognition of several pathogens. Mycobacterial antigens recognise distinct TLR resulting in rapid activation of cells of the innate immune system. Recent evidence from in vitro and in vivo investigations, summarised in this review demonstrates TLR-dependent activation of innate immune response, while the induction of adaptive immunity to mycobacteria may be TLR independent.  相似文献   

13.
The innate immune system detects microbes and abnormal self through pattern recognition receptors (PRRs), which detect molecules that are either specific for microbes (such as lipopolysaccharide), present in much higher concentrations during infection (such as double‐stranded RNA), or present in aberrant locations (such as cytosolic DNA) 1 . The Toll‐like receptors (TLRs) are the best‐described set of PRRs. TLRs are membrane‐bound receptors localized on the plasma membrane and in endosomes, the ligand‐binding regions of which face the extracellular environment and the endosomal lumen, respectively 1 . In this issue of EMBO Reports, Hu and colleagues report that WD‐repeat and FYVE‐domain‐containing protein 1 (WDFY1) recruits the signaling adaptor TRIF to TLR3 and TLR4, thereby potentiating signaling from these PRRs (Fig  1 ); 2 .  相似文献   

14.
髓样分化蛋白-2在天然免疫中的作用   总被引:1,自引:0,他引:1  
Xu FL  Li L 《生理科学进展》2004,35(2):139-142
Toll样受体 (Toll likereceptor ,TLR)家族作为模式识别受体 ,在天然免疫中具有重要作用。髓样分化蛋白 2 (myeloiddifferentialprotein 2 ,MD 2 )可能含有两个相对独立的功能结构域 ,既能与Toll样受体家族中的TLR4、TLR2结合 ,也能与多种配体结合 (包括lipopolysaccharide ,LPS)。这种特殊的结构可能与其三方面的主要功能有关 :(1)MD 2与TLR4结合 ,赋予TLR4对各种配体 (包括LPS)的反应性 ;(2 )MD 2与TLR2结合 ,赋予TLR2对LPS的反应性 ,并增强TLR2对细菌及其胞壁成分的反应性 ;(3)MD 2能促进TLR4和TLR2的表达 ,并且与TLR4在细胞内的分布密切相关。这表明MD 2可以通过两种方式直接或间接调控TLRs的功能 :与TLR2 /TLR4结合 ,或调控TLR2 /TLR4的表达与分布。因而MD 2不仅仅是TLR4的辅助分子 ,而且还是天然免疫中的调控分子 ,可能在感染、炎症、免疫等病理生理过程中具有更广泛的生物学功能  相似文献   

15.
Invertebrates, including shrimp, have developed very complicated innate immune system against pathogens. Much work has been performed on the innate immunity of shrimp, including immune recognition, signal transduction, effector molecules and antiviral responses due to its great economic value. Pattern recognition is the first step of innate immunity. Pattern recognition receptors (PRRs) sense the presence of infection and activate immune responses. The studies on shrimp PRRs revealed the recognition mechanism of shrimp at a certain degree. To date, 11 types of pattern recognition receptors (PRRs) have been identified in shrimp, namely, β-1,3-glucanase-related proteins, β-1,3-glucan-binding proteins, C-type lectins, scavenger receptors, galectins, fibrinogen-related proteins, thioester-containing protein, Down syndrome cell adhesion molecule, serine protease homologs, trans-activation response RNA-binding protein and Toll like receptors. A number of PRRs have been functionally studied and have been found to have different binding specificities and immune functions. The present review aims to summarize the current knowledge on the PRRs of shrimp.  相似文献   

16.
The innate immune system evolved to recognize conserved microbial products, termed pathogen-associated molecular patterns (PAMPs), which are invariant among diverse groups of microorganisms. PAMPs are recognized by a set of germ-line encoded pattern recognition receptors (PRRs). Among the best characterized PAMPs are bacterial lipopolysaccharide (LPS), peptidoglycan (PGN), mannans, and other constituents of bacterial and fungal cell walls, as well as bacterial DNA. Recognition of bacterial DNA is the most enigmatic of these, as it depends on a particular sequence motif, called the CpG motif, in which an unmethylated CpG present in a particular sequence context accounts for a potent immunostimulatory activity of CpG DNA. Receptor(s) of the innate immune system that mediate recognition of CpG DNA are currently unknown. Here, we report that recognition of CpG DNA requires MyD88, an adaptor protein involved in signal transduction by the Toll-like receptors (TLRs), essential components of innate immune recognition in both Drosophila and mammals [1,2]. Signaling induced by CpG DNA was found to be unaffected in cells deficient in TLR2 or TLR4, suggesting that some other member of the Toll family mediates recognition of bacterial DNA.  相似文献   

17.
Recognition of Streptococcus pneumoniae by the innate immune system   总被引:1,自引:0,他引:1  
Streptococcus pneumoniae is both a frequent colonizer of the upper respiratory tract and a leading cause of life-threatening infections such as pneumonia, meningitis and sepsis. The innate immune system is critical for the control of colonization and for defence during invasive disease. Initially, pneumococci are recognized by different sensors of the innate immune system called pattern recognition receptors (PRRs), which control most subsequent host defence pathways. These PRRs include the transmembrane Toll-like receptors (TLRs) as well as the cytosolic NOD-like receptors (NLRs) and DNA sensors. Recognition of S. pneumoniae by members of these PRR families regulates the production of inflammatory mediators that orchestrate the following immune response of infected as well as neighbouring non-infected cells, stimulates the recruitment of immune cells such as neutrophils and macrophages, and shapes the adaptive immunity. This review summarizes the current knowledge of the function of different PRRs in S. pneumoniae infection.  相似文献   

18.
Modulation of B cell responses by Toll-like receptors   总被引:1,自引:0,他引:1  
B lymphocytes are well known because of their key role in mediating humoral immune responses. Upon encounter with antigen and on cognate interaction with T cells, they differentiate into antibody-secreting plasma cells, which are critical for protection against a variety of pathogens. In addition to their antibody-production function, B cells are efficient antigen-presenting cells and express a variety of pathogen recognition receptors (PRRs). Engagement of these PRRs with their respective ligands results in cytokine and chemokine secretion and the upregulation of co-stimulatory molecules. These events constitute innate immune responses. Toll-like receptor (TLR) activation provides a third signal for B cell activation and is essential for optimal antigen-specific antibody responses. In some situations, TLR activation in B cells can result in autoimmunity. The purpose of this review is to provide some insights into the way that TLRs influence innate and adaptive B cell responses.  相似文献   

19.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Nod1 and Nod2 are members of the rapidly expanding family of NACHT domain-containing proteins involved in intracellular recognition of bacterial products. Nods proteins are involved in the cytosolic detection of peptidoglycan motifs of bacteria, recognized through the LRR domain. The role of the NACHT-LRR system of detection in innate immune responses is highlighted at the mucosal barrier, where most of the membranous Toll like receptors (TLRs) are not expressed, or with pathogens that have devised ways to escape TLR sensing. For a given pathogen, the sum of the pathways induced by the recognition of the different "pathogen associated molecular patterns" (PAMPs) by the different pattern recognition receptors (PRRs) trigger and shape the subsequent innate and adaptive immune responses. Knowledge gathered during the last decade on PRR and their agonists, and recent studies on bacterial infections provide new insights into the immune response and the pathogenesis of human infectious diseases.  相似文献   

20.
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号