首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.  相似文献   

2.
Genomic instability is a common feature found in cancer cells . Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instability would occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny.  相似文献   

3.
Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness.  相似文献   

4.
Understanding how genetic variation is generated and how selection shapes mutation rates over evolutionary time requires knowledge of the factors influencing mutation and its effects on quantitative traits. We explore the impact of two factors, genomic background and generation time, on deleterious mutation in Daphnia pulicaria, a cyclically parthenogenic aquatic microcrustacean, using parallel mutation-accumulation experiments. The deleterious mutational properties of life-history characters for individuals from two different populations, and for individuals maintained at two different generation times, were quantified and compared. Mutational properties varied between populations, especially for clutch size, suggesting that genomic background influences mutational properties for some characters. Generation time was found to have a greater effect on mutational properties, with higher per-generation deleterious mutation rates in lines with longer generation times. These results suggest that differences in genetic architecture among populations and species may be explained in part by demographic features that significantly influence generation time and therefore the rate of mutation.  相似文献   

5.
To study the effect of the ret1-1 mutation on the secretome, the glycosylation patterns and locations of the secretory proteins and glycosyltransferases responsible for glycosylation were investigated. Analyses of secretory proteins and cell wall-associated glycoproteins showed severe impairment of glycosylation in this mutant. Results from 2D-polyacrylamide gel electrophoresis (PAGE) indicated defects in the glycosylation and cellular localization of SDS-soluble cell wall proteins. Localization of RFP-tagged glycosyltransferase proteins in ret1-1 indicated an impairment of Golgi-to retrograde transport at a non-permissive temperature. Thus, impaired glycosylation caused by the mislocalization of ER resident proteins appears to be responsible for the alterations in the secretome and the increased sensitivity to ER stress in ret1-1 mutant cells.  相似文献   

6.
Intracellular levels of iron are tightly regulated. Saccharomyces cerevisiae uses well-defined pathways to extract iron molecules from the environment. Once inside the cell, the iron molecules must be transferred to target sites via an intracellular iron transporter. Although analogous carriers have been described for other metals, such as copper, an iron transporter has yet to be identified. We used two-dimensional gel electrophoresis and mass spectrometry techniques to attempt to identify the iron transporter from cytosolic fraction of S. cerevisiae. In this study, we identified the iron-binding activity of thioredoxin reductase, and our data suggest a potential role for this enzyme in intracellular iron transport.  相似文献   

7.
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals.The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts1-4. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.  相似文献   

8.
SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, structural diversities of complex sphingolipids [inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide] are often observed in the presence or absence of hydroxyl groups on the C-4 position of long-chain base (C4-OH) and the C-2 position of very long-chain fatty acids (C2-OH), but the biological significance of these groups remains unclear. Here, we evaluated cellular membrane fluidity in hydroxyl group-defective yeast mutants by fluorescence recovery after photobleaching. The lateral diffusion of enhanced green fluorescent protein-tagged hexose transporter 1 (Hxt1-EGFP) was influenced by the absence of C4-OH and/or C2-OH. Notably, the fluorescence recovery of Hxt1-EGFP was dramatically decreased in the sur2Δ mutant (absence of C4-OH) under the csg1Δcsh1Δ background, in which mannosylation of IPC is blocked leading to IPC accumulation, while the recovery in the scs7Δ mutant (absence of C2-OH) under the same background was modestly decreased. In addition, the amount of low affinity tryptophan transporter 1 (Tat1)-EGFP was markedly decreased in the sur2Δcsg1Δcsh1Δ mutant and accumulated in intracellular membranes in the scs7Δcsg1Δcsh1Δ mutant without altering its protein expression. These results suggest that C4-OH and C2-OH are most probably critical factors for maintaining membrane fluidity and proper turnover of membrane molecules in yeast containing complex sphingolipids with only one hydrophilic head group.  相似文献   

10.

Background

A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae.

Results

A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked.

Conclusions

Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0032-9) contains supplementary material, which is available to authorized users.  相似文献   

11.
The term 'sake yeast' is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast.  相似文献   

12.
During mitosis in budding yeast the nucleus first moves to the mother-bud neck and then into the neck. Both movements depend on interactions of cytoplasmic microtubules with the cortex. We investigated the mechanism of these movements in living cells using video analysis of GFP-labeled microtubules in wild-type cells and in EB1 and Arp1 mutants, which are defective in the first and second steps, respectively. We found that nuclear movement to the neck is largely mediated by the capture of microtubule ends at one cortical region at the incipient bud site or bud tip, followed by microtubule depolymerization. Efficient microtubule interactions with the capture site require that microtubules be sufficiently long and dynamic to probe the cortex. In contrast, spindle movement into the neck is mediated by microtubule sliding along the bud cortex, which requires dynein and dynactin. Free microtubules can also slide along the cortex of both bud and mother. Capture/shrinkage of microtubule ends also contributes to nuclear movement into the neck and can serve as a backup mechanism to move the nucleus into the neck when microtubule sliding is impaired. Conversely, microtubule sliding can move the nucleus into the neck even when capture/shrinkage is impaired.  相似文献   

13.
14.
15.
16.
The majority of all known diseases are accompanied by disorders of the cardiovascular system. Studies into the complexity of the interacting pathways activated during cardiovascular pathologies are, however, limited by the lack of robust and physiologically relevant methods. In order to model pathological vascular events we have developed an in vitro assay for studying the interaction between endothelium and whole blood. The assay consists of primary human endothelial cells, which are placed in contact with human whole blood. The method utilizes native blood with no or very little anticoagulant, enabling study of delicate interactions between molecular and cellular components present in a blood vessel.We investigated functionality of the assay by comparing activation of coagulation by different blood volumes incubated with or without human umbilical vein endothelial cells (HUVEC). Whereas a larger blood volume contributed to an increase in the formation of thrombin antithrombin (TAT) complexes, presence of HUVEC resulted in reduced activation of coagulation. Furthermore, we applied image analysis of leukocyte attachment to HUVEC stimulated with tumor necrosis factor (TNFα) and found the presence of CD16+ cells to be significantly higher on TNFα stimulated cells as compared to unstimulated cells after blood contact. In conclusion, the assay may be applied to study vascular pathologies, where interactions between the endothelium and the blood compartment are perturbed.  相似文献   

17.
Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.  相似文献   

18.
Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1 cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1 that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1 interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1 cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR.  相似文献   

19.
The efficient partitioning of the 2-microm plasmid of Saccharomyces cerevisiae at cell division is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In addition, host encoded factors are likely to contribute to plasmid segregation. Direct observation of a 2-microm-derived plasmid in live yeast cells indicates that the multiple plasmid copies are located in the nucleus, predominantly in clusters with characteristic shapes. Comparison to a single-tagged chromosome or to a yeast centromeric plasmid shows that the segregation kinetics of the 2-microm plasmid and the chromosome are quite similar during the yeast cell cycle. Immunofluorescence analysis reveals that the plasmid is colocalized with the Rep1 and Rep2 proteins within the yeast nucleus. Furthermore, the Rep proteins (and therefore the plasmid) tend to concentrate near the poles of the yeast mitotic spindle. Depolymerization of the spindle results in partial dispersion of the Rep proteins in the nucleus concomitant with a loosening in the association between plasmid molecules. In an ipl1-2 yeast strain, shifted to the nonpermissive temperature, the chromosomes and plasmid almost always missegregate in tandem. Our results suggest that, after DNA replication, plasmid distribution to the daughter cells occurs in the form of specific DNA-protein aggregates. They further indicate that the plasmid partitioning mechanism may exploit at least some of the components of the cellular machinery required for chromosomal segregation.  相似文献   

20.
Connelly CF  Akey JM 《Genetics》2012,191(4):1345-1353
Advances in sequencing technology have enabled whole-genome sequences to be obtained from multiple individuals within species, particularly in model organisms with compact genomes. For example, 36 genome sequences of Saccharomyces cerevisiae are now publicly available, and SNP data are available for even larger collections of strains. One potential use of these resources is mapping the genetic basis of phenotypic variation through genome-wide association (GWA) studies, with the benefit that associated variants can be studied experimentally with greater ease than in outbred populations such as humans. Here, we evaluate the prospects of GWA studies in S. cerevisiae strains through extensive simulations and a GWA study of mitochondrial copy number. We demonstrate that the complex and heterogeneous patterns of population structure present in yeast populations can lead to a high type I error rate in GWA studies of quantitative traits, and that methods typically used to control for population stratification do not provide adequate control of the type I error rate. Moreover, we show that while GWA studies of quantitative traits in S. cerevisiae may be difficult depending on the particular set of strains studied, association studies to map cis-acting quantitative trait loci (QTL) and Mendelian phenotypes are more feasible. We also discuss sampling strategies that could enable GWA studies in yeast and illustrate the utility of this approach in Saccharomyces paradoxus. Thus, our results provide important practical insights into the design and interpretation of GWA studies in yeast, and other model organisms that possess complex patterns of population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号