首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed two new site-specific recombination systems named VCre/VloxP and SCre/SloxP for genome engineering. Their recognition sites are different from Cre recognition sites because VCre and SCre recombinases share less protein similarity with Cre, even though the basic 13-8-13 structures of their recognition sites are identical. Mutant VloxP and SloxP, which have the same uses as mutant loxP, were also developed. VCre/VloxP and SCre/SloxP in combination with Cre/loxP and Flp/FRT systems can serve as powerful tools for genome engineering, especially when used to genetically modify both alleles of a single gene in mouse and human cells.  相似文献   

2.
DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other. In this study, we established four novel knock-in (KI) mouse strains in which VloxP-EGFP, SloxP-tdTomato, CAG-VCre, and CAG-SCre genes were inserted into the ROSA26 locus. VloxP-EGFP and SloxP-tdTomato KI mice were reporter mice carrying EGFP or tdTomato genes posterior to the stop codon, which was floxed by VloxP or SloxP fragments, respectively. CAG-VCre and CAG-SCre KI mice carried VCre or SCre genes that were expressed ubiquitously. These two reporter mice were crossed with three different deleter mice, CAG-VCre KI, CAG-SCre KI, and Cre-expressing transgenic mice. Through these matings, we found that VCre/VloxP and SCre/SloxP systems were functional in mice similar to Cre/loxP, and that the recombinases showed tight specificity for their recognition sequences. Our results suggest that these novel recombination systems allow highly sophisticated genome manipulations and will be useful for tracing the fates of multiple cell lineages or elucidating complex spatiotemporal regulations of gene expression.  相似文献   

3.
Traditional DNA transduction routes used for the modification of cellular genomes are subject to unpredictable alterations, as the cell-intrinsic repair machinery may affect both the integrity of the transgene and the recipient locus. These problems are overcome by recombinase-mediated cassette exchange (RMCE) approaches enabling predictable expression patterns by the nondisruptive insertion of a gene cassette at a pre-characterized genomic locus. The destination is marked by a “tag” consisting of two heterospecific recombination target sites (RTs) at the flanks of a selection marker. Provided on a circular donor vector, an analogous cassette encoding the gene of interest can cleanly replace the resident cassette under the influence of a site-specific recombinase. RMCE was first based on the yeast integrase Flp but had to give way to the originally more active phage-derived Cre enzyme. To be effective, both Tyr-recombinases have to be applied at a considerable concentration, which, in the case of Cre, triggers endonucleolytic activities and therefore cellular toxicity. This review addresses the particularities of both recombination routes depending on the structure of the synaptic complex and on improved integrase and RT variants. While the performance of Flp-RMCE can now firmly rely on optimized Flp variants and multiple sets of functional target sites (FRTs), the Cre system suffers from the promiscuity of its RT mutants, which is explained in molecular terms. At present, RMCE enters applications in the stem cell field. Remarkable efforts are noted in the framework of various mouse mutagenesis programs, which, in their first phase, have targeted virtually all genes and now start to shift their emphasis from gene trapping to gene modification.  相似文献   

4.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   

5.
We developed a site-directed integration (SDI) system for Agrobacterium-mediated transformation to precisely integrate a single copy of a desired gene into a predefined target locus by recombinase-mediated cassette exchange (RMCE). We produced site-specific transgenic tobacco plants from four target lines and examined expression of the transgene in T1 site-specific transgenic tobacco plants, which were obtained by backcrossing. We found that site-specific transgenic plants from the same target lines showed approximately the same level of expression of the transgene. Moreover, we demonstrated that site-specific transgenic plants showed much less variability of transgene expression than random-integration transgenic plants. Interestingly, transgenes in the same direction at the same target locus showed the same level of activity, but transgenes in different directions showed different levels of activity. The expression levels of transgene did not correlate with those of the target gene. Our results showed that the SDI system could benefit the precise comparisons between different gene constructs, the characterization of different chromosomal regions and the cost-effective screening of reliable transgenic plants.  相似文献   

6.
To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in‐market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase‐mediated cassette exchange (RMCE) system to build a site‐specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT‐flanked mAb expression cassette, we generated a clonal cell line with good productivity, long‐term production stability, and low mAb gene‐copy number indicating the vector was located in a ‘hot‐spot.’ A SSI host cell line was made by removing the mAb genes from the ‘hot‐spot’ by RMCE, creating a ‘landing pad’ containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP‐based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened ‘time‐to‐clinic’ for therapeutic mAbs. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1645–1656, 2015  相似文献   

7.
The endothelin (Edn) system comprises three ligands (Edn1, Edn2 and Edn3) and their G-protein-coupled type A (Ednra) and type B (Ednrb) receptors. During embryogenesis, the Edn1/Ednra signaling is thought to regulate the dorsoventral axis patterning of pharyngeal arches via Dlx5/Dlx6 upregulation. To further clarify the underlying mechanism, we have established mice in which gene cassettes can be efficiently knocked-in into the Ednra locus using recombinase-mediated cassette exchange (RMCE) based on the Cre-lox system. The first homologous recombination introducing mutant lox-flanked Neo resulted in homeotic transformation of the lower jaw to an upper jaw, as expected. Subsequent RMCE-mediated knock-in of lacZ targeted its expression to the cranial/cardiac neural crest derivatives as well as in mesoderm-derived head mesenchyme. Knock-in of Ednra cDNA resulted in a complete rescue of craniofacial defects of Ednra-null mutants. By contrast, Ednrb cDNA could not rescue them except for the most distal pharyngeal structures. At early stages, the expression of Dlx5, Dlx6 and their downstream genes was downregulated and apoptotic cells distributed distally in the mandible of Ednrb-knock-in embryos. These results, together with similarity in craniofacial defects between Ednrb-knock-in mice and neural-crest-specific Galpha(q)/Galpha(11)-deficient mice, indicate that the dorsoventral axis patterning of pharyngeal arches is regulated by the Ednra-selective, G(q)/G(11)-dependent signaling, while the formation of the distal pharyngeal region is under the control of a G(q)/G(11)-independent signaling, which can be substituted by Ednrb. This RMCE-mediated knock-in system can serve as a useful tool for studies on gene functions in craniofacial development.  相似文献   

8.
ATP-binding cassette (ABC) proteins constitute a large superfamily found in all kingdoms of living organisms. The recent completion of two draft sequences of the rice (Oryza sativa) genome allowed us to analyze and classify its ABC proteins and to compare to those in Arabidopsis thaliana. We identified a similar number of ABC proteins in rice and Arabidopsis (121 versus 120), despite the rice genome being more than three times the size of Arabidopsis. Both Arabidopsis and rice have representative members in all seven major subfamilies of ABC ATPases (A to G) commonly found in eukaryotes. This comparative analysis allowed the detection of 29 potential orthologous sequences in Arabidopsis and rice. However, plant share with prokaryotes a specific set of ABC systems that is not detected in animals. These ABC systems might be inherited from the cyanobacterial ancestor of chloroplasts. The present work provides the first complete inventory of rice ABC proteins and an updated inventory of those proteins in Arabidopsis.  相似文献   

9.
10.
Rates and regioselectivity of arene exchange reactions in cationic fused arene Fe(II)Cp complexes were investigated. Thermal exchange of pyrene, naphthalenes, and cyclooctatetraene occurs in the temperature range of 90-140 °C. The most labile complex in the series studied is [(η6-(1-4,4a,8a)-1,4-dimethoxynaphthalene)FeCp][PF6] having the FeCp coordinated to the substituted ring. Pyrene and other naphthalene complexes come next, followed by the cyclooctatetraene complex. Phenanthrene, veratrol, and dihydronaphthalene do not undergo exchange at temperatures up to 130 °C. With Me- and OMe-substituted naphthalenes, exchange is reversible and favors the product having the metal coordinated to the non-substituted ring. The X-ray crystal structures of the two regioisomeric 1,4-dimethoxynaphthalene complexes were determined. Arene exchange in fused arene complexes is shown to be a useful synthetic method and provides new arene complexes cleanly and efficiently. The method is particularly attractive for arenes that contain functionalities that are not compatible with the Lewis acid-mediated routes. The starting materials are readily accessible via the TiCl4-assisted Cp exchange in ferrocene.  相似文献   

11.
Site-specific recombinases have revolutionized the systematic generation of transgenic cell lines and embryonic stem cells/animals and will ultimately also reveal their potential in the genetic modification of induced pluripotent stem cells. Introduced in 1994, our Flp recombinase-mediated cassette exchange strategy permits the exchange of a target cassette for a cassette with the gene of interest, introduced as a part of an exchange vector. The process is “clean” in the sense that it does not co-introduce prokaryotic vector parts; neither does it leave behind a selection marker. Stringent selection principles provide master cell lines permitting subsequent recombinase-mediated cassette exchange cycles in the absence of a drug selection and with a considerable efficiency (∼ 10%). Exemplified by Chinese hamster ovary cells, the strategy proves to be successful even for cell lines with an unstable genotype.  相似文献   

12.
There is a need for better approaches to allow precise engineering of large genomic BAC DNA fragments, to facilitate the use of intact genomic loci for therapeutic and biotechnology applications. We report an efficient method to insert any modification in any genomic locus, using a human beta-globin locus BAC clone as a model system. The modifications can range from single base changes to large insertions or deletions and leave no operational sequences. A counterselection cassette, consisting of an inducible I-SceI gene, its recognition site, and an antibiotic resistance gene, is inserted into the targeted region using GET Recombination. A PCR fragment carrying the modification but no selectable marker replaces the counterselection cassette in a second round of GET Recombination. The unique I-SceI site in the counterselection cassette is cut by I-SceI endonuclease, strongly selecting against nonrecombinant clones and yielding up to 30% correct recombinants.  相似文献   

13.
ATP-binding cassette (ABC) transport proteins catalyze the translocation of substrates at the expense of hydrolysis of ATP, but the actual ATP/substrate stoichiometry is still controversial. In the osmoregulated ABC transporter (OpuA) from Lactococcus lactis, ATP hydrolysis and substrate translocation are tightly coupled, and the activity of right-side-in and inside-out reconstituted OpuA can be determined accurately. Although the ATP/substrate stoichiometry determined from the uptake of glycine betaine and intravesicular ATP hydrolysis tends to increase with decreasing average size of the liposomes, the data from inside-out reconstituted OpuA indicate that the mechanistic stoichiometry is 2. Moreover, the two orientations of OpuA in proteoliposomes allowed possible contributions from substrate (glycine betaine) inhibition on the trans-side of the membrane and inhibition by ADP to be determined. Here we show that OpuA is not inhibited by up to 400 mm glycine betaine on the trans-side of the membrane. ADP is an inhibitor, but accumulation of ADP was negligible in the assays with inside-out-oriented OpuA, and potential effects of the ATP/ADP ratio on the ATP/substrate stoichiometry determinations could be eliminated.  相似文献   

14.
Manipulation of gene expression to invoke loss of function (LoF) or gain of function (GoF) phenotypes is important for interrogating complex biological questions both in vitro and in vivo. Doxycycline (Dox)-inducible gene expression systems are commonly used although success is often limited by high background and insufficient sensitivity to Dox. Here we develop broadly applicable platforms for reliable, tightly controlled and reversible Dox-inducible systems for lentiviral mediated generation of cell lines or FLP Recombination-Mediated Cassette Exchange (RMCE) into the Collagen 1a1 (Col1a1) locus (FLP-In Col1a1) in mouse embryonic stem cells. We significantly improve the flexibility, usefulness and robustness of the Dox-inducible system by using Tetracycline (Tet) activator (Tet-On) variants which are more sensitive to Dox, have no background activity and are expressed from single Gateway-compatible constructs. We demonstrate the usefulness of these platforms in ectopic gene expression or gene knockdown in multiple cell lines, primary neurons and in FLP-In Col1a1 mouse embryonic stem cells. We also improve the flexibility of RMCE Dox-inducible systems by generating constructs that allow for tissue or cell type-specific Dox-inducible expression and generate a shRNA selection algorithm that can effectively predict potent shRNA sequences able to knockdown gene expression from single integrant constructs. These platforms provide flexible, reliable and broadly applicable inducible expression systems for studying gene function.  相似文献   

15.
Watson AT  Garcia V  Bone N  Carr AM  Armstrong J 《Gene》2008,407(1-2):63-74
Cre/lox site-specific recombination systems provide important tools for genetic manipulation. Here we present an efficient method for gene tagging and gene replacement using Cre recombinase-mediated cassette exchange (RMCE). The cassette consists of the S. pombe ura4(+) selectable marker flanked by a wild-type loxP site at one end and by a modified heterospecific lox site (loxM3) at the other. The cassette is stable because the flanking lox sites cannot recombine with each other. Following integration of the cassette at the chosen chromosomal locus, exchange is achieved by introducing a Cre-expression plasmid containing an equivalent cassette containing the required tag or gene sequence. Recombinants are selected by uracil prototrophy using the reagent 5-fluoroorotic acid (5-FOA). The cassette exchange system provides for repetitive integrations at the same locus, allowing different protein tags or gene sequences to be integrated quickly and efficiently. We have established a range of reagents and verified utility by C-terminally tagging the S. pombe rad4 and swi1 genes with yEGFP and the yEGFP derivatives yECFP and yECitrine and by transferring the coding sequence for both genes.  相似文献   

16.
The Escherichia coli ATP-binding cassette (ABC) proteins   总被引:7,自引:1,他引:7  
The recent completion of the Escherichia coli genome sequence ( Blattner et al ., 1997 ) has permitted an analysis of the complement of genomically encoded ATP-binding cassette (ABC) proteins. A total of 79 ABC proteins makes this the largest paralogous family of proteins in E . coli . These 79 proteins include 97 ABC domains (as some proteins include more than one ABC domain) and are components of 69 independent functional systems (as many systems involve more than one ABC domain). The ABC domains are often, but not exclusively, the energy-generating domains of multicomponent membrane-bound transporters. Thus, 57 of the 69 systems are ABC transporters, of which 44 are periplasmic-binding protein-dependent uptake systems and 13 are presumed exporters. The genes encoding these ABC transporters occupy almost 5% of the genome. Of the 12 systems that are not obviously transport related, the function of only one, the excision repair protein UvrA, is known. A phylogenetic analysis suggests that the majority of ABC proteins can be assigned to 10 subfamilies. Together with statistical and, importantly, biological evidence, this analysis provides insight into the evolution and function of the ABC proteins.  相似文献   

17.
18.
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases.  相似文献   

19.
20.
ATP-binding cassette (ABC) transporters in human metabolism and diseases   总被引:12,自引:0,他引:12  
The ATP-binding cassette (ABC) superfamily of active transporters involves a large number of functionally diverse transmembrane proteins. They transport a variety of substrates including amino acids, lipids, inorganic ions, peptides, saccharides, metals, drugs, and proteins. The ABC transporters not only move a variety of substrates into and out of the cell, but also are also involved in intracellular compartmental transport. Energy derived from the hydrolysis of ATP is used to transport the substrate across the membrane against a concentration gradient. The typical ABC transporter consists of two transmembrane domains and two nucleotide-binding domains. Defects in 14 of these transporters cause 13 genetic diseases (cystic fibrosis, Stargardt disease, adrenoleukodystrophy, Tangier disease, etc.). Mutations in three genes affect lipid levels expressively. Mutations in ABCA1 cause severe HDL deficiency syndromes called Tangier disease and familial high-density lipoprotein deficiency, which are characterized by a severe deficiency or absence of high-density lipoprotein in the plasma. Two other ABCG transporters, ABCG5 and ABCG8, mutations of which cause sitosterolemia, have been identified. The affected individuals absorb and retain plant sterols, as well as shellfish sterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号