首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A map for horizontal disparity in monkey V2   总被引:1,自引:0,他引:1  
Chen G  Lu HD  Roe AW 《Neuron》2008,58(3):442-450
The perception of visual depth is determined by integration of spatial disparities of inputs from the two eyes. Single cells in visual cortex of monkeys are known to respond to specific binocular disparities; however, little is known about their functional organization. We now show, using intrinsic signal optical imaging and single-unit physiology, that, in the thick stripe compartments of the second visual area (V2), there is a clustered organization of Near cells and Far cells, and moreover, there are topographic maps for Near to Far disparities within V2. Our findings suggest that maps for visual disparity are calculated in V2, and demonstrate parallels in functional organization between the thin, pale, and thick stripes of V2.  相似文献   

2.
Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex.  相似文献   

3.
Stereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects. In macaques, we found strongest activation to near/far compared to zero disparity in areas V3, V3A, and CIPS. In humans, we found strongest activation to the same stimuli in areas V3A, V7, the V4d topolog (V4d-topo), and a caudal parietal disparity region (CPDR). Thus, in both primate species a small cluster of areas at the parieto-occipital junction appears to be specialized for stereopsis.  相似文献   

4.
Human exhibits an anisotropy in direction perception: discrimination is superior when motion is around horizontal or vertical rather than diagonal axes. In contrast to the consistent directional anisotropy in perception, we found only small idiosyncratic anisotropies in smooth pursuit eye movements, a motor action requiring accurate discrimination of visual motion direction. Both pursuit and perceptual direction discrimination rely on signals from the middle temporal visual area (MT), yet analysis of multiple measures of MT neuronal responses in the macaque failed to provide evidence of a directional anisotropy. We conclude that MT represents different motion directions uniformly, and subsequent processing creates a directional anisotropy in pathways unique to perception. Our data support the hypothesis that, at least for visual motion, perception and action are guided by inputs from separate sensory streams. The directional anisotropy of perception appears to originate after the two streams have segregated and downstream from area MT.  相似文献   

5.
In the past two decades, sensory neuroscience has moved from describing response properties to external stimuli in cerebral cortex to establishing connections between neuronal activity and sensory perception. The seminal studies by Newsome, Movshon and colleagues in the awake behaving macaque firmly link single cells in extrastriate area V5/MT and perception of motion. A decade later, extrastriate visual cortex appears awash with neuronal correlates for many different perceptual tasks. Examples are attentional signals, choice signals for ambiguous images, correlates for binocular rivalry, stereo and shape perception, and so on. These diverse paradigms are aimed at elucidating the neuronal code for perceptual processes, but it has been little studied how they directly compare or even interact. In this paper, I explore to what degree the measured neuronal signals in V5/MT for choice and attentional paradigms might reflect a common neuronal mechanism for visual perception.  相似文献   

6.
We present a functional model of form pathway in visual cortex based on predictive coding scheme, in which the prediction is compared with feedforward signals filtered by two kinds of spatial resolution maps, broad and fine resolution map. We propose here the functional role of the prediction and of the two kinds of resolution maps in perception of object form in visual system. The prediction is represented based on memory of dynamical attractors in temporal cortex, categorized by an elemental figure in posterior temporal cortex. The prediction is generated by the feedforward signals of main neurons in broad resolution maps of V(1) and V(4), and then is compared with the feedforward signals of main neurons in fine resolution map of V(1) and V(4).  相似文献   

7.
The principal component analysis of matrices composed of spike numbers generated by visual neurons of cats in response to motion of simple and complex stimuli revealed vector encoding. Responses of detectors of moving dot direction and detectors of oblique line orientation are encoded independently in V1 and V2 cortices by excitation of two cardinal neurons. Each pair of these neurons generates sine and cosine functions. Responses of detectors in the association cortex selective to specific orientation of moving stripes depend on the activity of four cardinal neurons which sum up the excitation incoming from the direction and orientation channels.  相似文献   

8.
Based on measuring responses to rat whiskers as they are mechanically stimulated, one recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex (S1) contain a pinwheel map of whisker motion directions. Because this map is reminiscent of topographic organization for visual direction in primary visual cortex (V1) of higher mammals, we asked whether the S1 pinwheels could be explained by an input-driven developmental process as is often suggested for V1. We developed a computational model to capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical interactions using an established self-organizing algorithm. Inputs to the model each represent the deflection of a subset of 25 whiskers as they are contacted by a moving stimulus object. The subset of deflected whiskers corresponds with the shape of the stimulus, and the deflection direction corresponds with the movement direction of the stimulus. If these two features of the inputs are correlated during the training of the model, a somatotopically aligned map of direction emerges for each whisker in S1. Predictions of the model that are immediately testable include (1) that somatotopic pinwheel maps of whisker direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat''s face, even peripheral whiskers; and (2) in the adult, neurons with similar directional tuning are interconnected by a network of horizontal connections, spanning distances of many whisker representations. We also propose specific experiments for testing the predictions of the model by manipulating patterns of whisker inputs experienced during early development. The results suggest that similar intracortical mechanisms guide the development of primate V1 and rat S1.  相似文献   

9.
Pack CC  Livingstone MS  Duffy KR  Born RT 《Neuron》2003,39(4):671-680
Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry only ambiguous motion information. Here we show that a subpopulation of V1 neurons is capable of signaling motion direction in a manner that is independent of contour orientation. Specifically, end-stopped V1 neurons obtain accurate motion measurements by responding only to the endpoints of long contours, a strategy which renders them largely immune to the aperture problem. Furthermore, the time course of end-stopping is similar to the time course of motion integration by MT neurons. These results suggest that cortical neurons might represent object motion by responding selectively to two-dimensional discontinuities in the visual scene.  相似文献   

10.
Kamitani Y  Tong F 《Current biology : CB》2006,16(11):1096-1102
Functional neuroimaging has successfully identified brain areas that show greater responses to visual motion and adapted responses to repeated motion directions. However, such methods have been thought to lack the sensitivity and spatial resolution to isolate direction-selective responses to individual motion stimuli. Here, we used functional magnetic resonance imaging (fMRI) and pattern classification methods to show that ensemble activity patterns in human visual cortex contain robust direction-selective information, from which it is possible to decode seen and attended motion directions. Ensemble activity in areas V1-V4 and MT+/V5 allowed us to decode which of eight possible motion directions the subject was viewing on individual stimulus blocks. Moreover, ensemble activity evoked by single motion directions could effectively predict which of two overlapping motion directions was the focus of the subject's attention and presumably dominant in perception. Our results indicate that feature-based attention can bias direction-selective population activity in multiple visual areas, including MT+/V5 and early visual areas (V1-V4), consistent with gain-modulation models of feature-based attention and theories of early attentional selection. Our approach for measuring ensemble direction selectivity may provide new opportunities to investigate relationships between attentional selection, conscious perception, and direction-selective responses in the human brain.  相似文献   

11.
The perception of visual motion can be selectively and reversibly compromised by transcranial magnetic stimulation (TMS) of a small region of cortex, roughly 1 cm in diameter and corresponding in position to human area V5. The reversible inactivation of a small and specialized visual area which receives its predominant input from area V1 and sends a powerful return (re-entrant) input back to it allowed us to study for the first time the backward influence of area V5 on area V1. In contrast to the complete and temporary visual motion blindness which occurs during stimulation of V5, a less-prominent interference with the perception of visual motion occurs at 70-80 ms after the onset of the visual stimulus when TMS is applied to V1. Because V5 is critical for the perception of coherent motion, and because an intact re-entry of signals from V5 to V1 is essential for the conscious perception of visual motion, the results obtained with stimulation of V1 must be caused by a disruption of the re-entrant signals from V5 to V1.  相似文献   

12.
Stability of cortical responses and the statistics of natural scenes.   总被引:1,自引:0,他引:1  
V Dragoi  C M Turcu  M Sur 《Neuron》2001,32(6):1181-1192
The primary visual cortex (V1) of higher mammals contains maps of stimulus features; how these maps influence vision remains unknown. We have examined the functional significance of an asymmetry in the orientation map in cat V1, i.e., the fact that a larger area of V1 is preferentially activated by vertical and horizontal contours than by contours at oblique orientations. Despite the fact that neurons tuned to cardinal and oblique orientations have indistinguishable tuning characteristics, cardinal neurons remain more stable in their response properties after selective perturbation induced by adaptation. Similarly, human observers report different adaptation-induced changes in orientation tuning between cardinal and oblique axes. We suggest that the larger cortical area devoted to cardinal orientations imposes stability on the processing of cardinal contours during visual perception, by retaining invariant cortical responses along cardinal axes.  相似文献   

13.
Tsao DY  Conway BR  Livingstone MS 《Neuron》2003,38(1):103-114
Binocular simple cells in primary visual cortex (V1) are the first cells along the mammalian visual pathway to receive input from both eyes. Two models of how binocular simple cells could extract disparity information have been put forward. The phase-shift model proposes that the receptive fields in the two eyes have different subunit organizations, while the position-shift model proposes that they have different overall locations. In five fixating macaque monkeys, we recorded from 30 disparity-tuned simple cells that showed selectivity to the disparity in a random dot stereogram. High-resolution maps of the left and right eye receptive fields indicated that both phase and position shifts were common. Single cells usually showed a combination of the two, and the optimum disparity was best correlated with the sum of receptive field phase and position shift.  相似文献   

14.
Knowledge-based or top-down influences on primary visual cortex (area V1) are believed to originate from information conveyed by extrastriate feedback axon connections. Understanding how this information is communicated to area V1 neurons relies in part on elucidating the quantitative as well as the qualitative nature of extrastriate pathway connectivity. A quantitative analysis of the connectivity based on anatomical data regarding the feedback pathway from extrastriate area V2 to area V1 in macaque monkey suggests (i) a total of around ten million or more area V2 axons project to area V1; (ii) the mean number of synaptic inputs from area V2 per upper-layer pyramidal cell in area V1 is less than 6% of all excitatory inputs; and (iii) the mean degree of convergence of area V2 afferents may be high, perhaps more than 100 afferent axons per cell. These results are consistent with empirical observations of the density of radial myelinated axons present in the upper layers in macaque area V1 and the proportion of excitatory extrastriate feedback synaptic inputs onto upper-layer neurons in rat visual cortex. Thus, in primate area V1, extrastriate feedback synapses onto upper-layer cells may, like geniculocortical afferent synapses onto layer IVC neurons, form only a small percentage of the total excitatory synaptic input.  相似文献   

15.
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals.  相似文献   

16.
Invariant representations of stimulus features are thought to play an important role in producing stable percepts of objects. In the present study, we assess the invariance of neural representations of tactile motion direction with respect to other stimulus properties. To this end, we record the responses evoked in individual neurons in somatosensory cortex of primates, including areas 3b, 1, and 2, by three types of motion stimuli, namely scanned bars and dot patterns, and random dot displays, presented to the fingertips of macaque monkeys. We identify a population of neurons in area 1 that is highly sensitive to the direction of stimulus motion and whose motion signals are invariant across stimulus types and conditions. The motion signals conveyed by individual neurons in area 1 can account for the ability of human observers to discriminate the direction of motion of these stimuli, as measured in paired psychophysical experiments. We conclude that area 1 contains a robust representation of motion and discuss similarities in the neural mechanisms of visual and tactile motion processing.  相似文献   

17.
Shapley R 《Neuron》2007,56(5):755-756
Roelfsema, Tolboom, and Khayat have found that neurons in primary visual cortex, V1, increase their spike firing rates to signal image segmentation and attention. V1 responses were in a temporal sequence: first to image motion, next to segmentation, last to attentional signals. The involvement of V1 with segmentation and attention suggests modifying the hierarchical view of visual perception.  相似文献   

18.
Kim CY  Blake R 《Spatial Vision》2007,20(6):545-560
Early 20th century artists including Duchamp and Balla tried to portray moving objects on a static canvas by superimposing objects in successive portrayals of an action. We investigated whether implied motion in those paintings is associated with activation of motion-sensitive area MT+. In Experiment 1, we found that observers rated these kinds of paintings higher in portraying motion than they did other abstract paintings in which motion is not intended. We also found that observers who had previously experienced abstract paintings with implied motion tended to give higher motion ratings to that class of paintings. In Experiment 2, we used functional magnetic resonance imaging (fMRI) to measure brain activity of observers while viewing abstract paintings receiving the highest and the lowest motion rating scores in Experiment 1. We found MT+, but not primary visual cortex (V1), showed greater BOLD responses to abstract paintings with implied motion than to abstract paintings with little motion impression, but only in observers with prior experience viewing those kinds of paintings. These results imply that the neural machinery ordinarily engaged during perception of real visual motion is activated when people view paintings explicitly designed to convey a sense of visual motion. Experience, however, is necessary to achieve this sense of motion.  相似文献   

19.
A common view about visual consciousness is that it could arise when and where activity reaches some higher level of processing along the cortical hierarchy. Reports showing that activity in striate cortex can be dissociated from awareness , whereas the latter modulates activity in higher areas , point in this direction. In the specific case of visual motion, a central, "perceptual" role has been assigned to area V5: several human and monkey studies have shown V5 activity to correlate with the motion percept. Here we show that activity in this and other higher cortical areas can be also dissociated from perception and follow the physical stimulus instead. The motion information in a peripheral grating modulated fMRI responses, despite being invisible to human volunteers: under crowding conditions , areas V3A, V5, and parietal cortex still showed increased activity when the grating was moving compared to when it was flickering. We conclude that stimulus-specific activation of higher cortical areas does not necessarily result in awareness of the underlying stimulus.  相似文献   

20.
Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号