首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.  相似文献   

2.
提取基因组进行检测是酵母研究过程中的必要步骤之一。以毕赤酵母菌株GS115作为研究对象,主要成分为0.2 mol/L醋酸锂和1% SDS的酵母裂解液能高效的裂解酵母细胞壁。与两种酵母基因组提取试剂盒相比,该方法从相同体积的酵母培养液中获得的基因组的量高5倍以上,并且操作简便、快速,能在2 h内完成一次提取过程,极大地缩短了时间。以GS115中的内源AOX基因为目的基因,对提取的基因组进行PCR检测和Southern杂交检测,进一步验证了基因组的质量。因此,本文建立了一种简便、快速、经济而高效的酵母基因提取方法。  相似文献   

3.
High quality genomic DNA is the first step in the development of DNA-based markers for fingerprinting and genetic diversity of crops, including mango (Mangifera indica L.), a woody perennial. Poor quality genomic DNA hinders the successful application of analytical DNA-based tools. Standard protocols for DNA extraction are not suitable for mango since the extracted genomic DNA often contains secondary metabolites that interfere with analytical applications. In this study, we employed an additional step to remove polysaccharides, polyphenols and secondary metabolites from genomic DNA extracted from young or mature leaf tissue; then a modified traditional cetyl trimethyl ammonium bromide (CTAB) method was applied. The use of 0.4 M glucose improved DNA quality and avoided contamination and browning by polyphenolics, relative to the traditional CTAB method. This is an easy and efficient method for genomic DNA extraction from both young and mature leaves of mango. The isolated DNA was free of polysaccharides, polyphenols, RNA and other major contaminants, as judged by its clear colour, its viscosity, A260/A280 ratio and suitability for PCR-based reactions. This modified protocol was also used to extract high quality genomic DNA from other woody perennials, including walnut, guava, lychee, pear, grape and sugarcane.  相似文献   

4.
Circular yeast artificial chromosomes (YACs) provide significant advantages for cloning and manipulating large segments of genomic DNA in Saccharomyces cerevisiae. However, it has been difficult to exploit these advantages, because circular YACs are difficult to isolate and purify. Here we describe a method for purification of large circular YACs that is more reliable compared with previously described protocols. This method has been used to purify YACs up to 600 kb in size. The purified YAC DNA is suitable for restriction enzyme digestion, DNA sequencing and functional studies. For example, YACs carrying full-size genes can be purified from yeast and used for transfection into mammalian cells or for the construction of a synthetic genome that can be used to produce a synthetic cell. This method for isolating high-quality YAC DNA in microgram quantities should be valuable for functional and synthetic genomic studies. The entire protocol takes ~3 d to complete.  相似文献   

5.

Background

Mutagenesis of yeast artificial chromosomes (YACs) often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates.

Results

Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC.

Conclusion

An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.
  相似文献   

6.
Current protocols to extract genomic DNA from microorganisms are still laborious, tedious and costly, especially for the species with thick cell walls. In order to improve the effectiveness of extracting DNA from microbial samples, a novel protocol, defined as two-step extraction method, along with an improved tissue-grinding device, was developed. The protocol included two steps, disruption of microbial cells or spores by grinding the sample together with silica sand in a new device and extraction of DNA with an effective buffer containing cell lysis chemicals. The device was prepared by using a commercial electric mini-grinder, adapted with a grinding stone, and a sample cup processed by lathing from a polytetrafluoroethylene rod. We tested the method with vegetative cells of four microbial species and two microbial spores that have thick cell walls and are therefore hard to process; these included Escherichia coli JM109, Bacillus subtilis WB600, Sacchromyces cerevisiae INVSc1, Trichoderma viride AS3.3711, and the spores of S. cerevisiae and T. viride, respectively, representing Gram-positive bacteria, Gram-negative bacteria, yeast, filamentous fungi. We found that this new method and device extracted usable quantities of genomic DNA from the samples. The DNA fragments that were extracted exceeded 23 kb. The target sequences up to about 5 kb were successfully and exclusively amplified by PCR using extracted DNA as the template. In addition, the DNA extraction was finalized within 1.5 h. Thus, we conclude that this two-step extraction method is an effective and improved protocol for extraction of genomic DNA from microbial samples.  相似文献   

7.
The comet assay: a method to measure DNA damage in individual cells   总被引:4,自引:0,他引:4  
We present a procedure for the comet assay, a gel electrophoresis-based method that can be used to measure DNA damage in individual eukaryotic cells. It is versatile, relatively simple to perform and sensitive. Although most investigations make use of its ability to measure DNA single-strand breaks, modifications to the method allow detection of DNA double-strand breaks, cross-links, base damage and apoptotic nuclei. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell. DNA damage and its repair in single-cell suspensions prepared from yeast, protozoa, plants, invertebrates and mammals can also be studied using this assay. Originally developed to measure variation in DNA damage and repair capacity within a population of mammalian cells, applications of the comet assay now range from human and sentinel animal biomonitoring (e.g., DNA damage in earthworms crawling through toxic waste sites) to measurement of DNA damage in specific genomic sequences. This protocol can be completed in fewer than 24 h.  相似文献   

8.
We describe here a simple and efficient protocol for genomic DNA isolation from adult males of insects: e.g., Ephemeroptera, Odonata, Orthoptera and Dictyoptera. To minimize contamination of external DNA source, the sperm vesicles were isolated from male individuals from which high molecular weight genomic DNA was extracted. According to this protocol, the genomic DNA samples obtained were high quality (intact), and abundant enough for genotyping analyses and molecular cloning. The protocol reported here enables us to process a huge number of individuals at a time with escaping from cross-contamination, and thus it is quite useful for conducting genetic studies at least in some species of insects. The large yield of high molecular weight DNA from single individual may be advantageous for non PCR-based experiments. As a case study of the protocol, partial coding sequences of histone H3 and EF-1α genes are determined for some insects with PCR-amplified DNA fragments.  相似文献   

9.
利用改进的酚-氯仿法从猪毛囊中提取基因组DNA   总被引:2,自引:0,他引:2  
王继英  俞英  冯利霞  王怀中  张勤 《遗传》2010,32(7):752-756
为提高从猪毛囊组织中提取基因组DNA的效率, 文章在借鉴从其他组织提取基因组DNA方法的基础上, 对经典的酚-氯仿法的反应体系和步骤进行了改进。利用改进的酚-氯仿抽提法, 从猪的毛囊组织中快速、高效地提取了高质量基因组DNA。利用该方法从1~6根猪毛囊中提取的基因组DNA可满足基于PCR技术的相关分子生物学实验需要。  相似文献   

10.
With the development of the DNA barcoding project, a large number of specimens are required to establish the library of reference barcode. Formalin-fixed samples from museums provide a potential resource for it. However, recovery of DNA and amplification of the target gene from formalin-fixed samples are challenging. In this study, a hot alkali pre-treatment accompanied by the use of cetyltrimethylammonium bromide (CTAB) method was employed for DNA recovery from formalin-preserved samples, with the purpose of pursuing the optimal condition for high quantity and quality of DNA and minimizing PCR inhibition. Meanwhile, a semi-nested PCR-based method was developed to enhance the efficacy of amplification. This advanced protocol was demonstrated to be reliable and effective. Even for 23-year-old samples, genomic DNA could be extracted, and COI gene was correctly sequenced.  相似文献   

11.
OBJECTIVE: To date, there are only few systematic reports on the quality of DNA extracted from routine diagnostic cytologic specimens. It was the aim of the present study to evaluate the ability of 50% ethanol/2% carbowax (Saccomanno fixative) to preserve bronchial secretions with high quality genomic DNA as well as to compare different DNA extraction methods. METHODS: DNA was extracted from 45 bronchial aspirates by four different extraction protocols. Beside DNA yield, DNA quality with regard to purity, integrity, and PCR success rate were investigated. RESULTS: No fragmentation of sample DNA due to the fixative was detected. It was preserved as high molecular weight DNA. DNA yield, purity, and integrity were dependent on the DNA extraction method to some extend. Irrespective of the DNA extraction method the PCR success rate for amplification of beta-globin gene fragments (268, 536, and 989 bp) was 100%. CONCLUSION: A fixative containing 50% ethanol/2% carbowax preserves high quality DNA which is well suited for PCR-based assays regardless of the extraction protocol used. The selection of the DNA extraction protocol has to be adjusted to the circumstances of application.  相似文献   

12.
We describe an automated method for the preparation of yeast genomic DNA capable of preparing thousands of DNAs in parallel from a YAC library. Briefly, the protocol involves four steps: (1) Yeast clones are grown in the wells of 96-well microtiter plates with filter (rather than plastic) well-bottoms, which are embedded in solid growth media; (2) These yeast cultures are resuspended and their concentrations determined by optical density measurement; (3) Equal numbers of cells from each well are embedded in low-melting temperature agarose blocks in fresh 96-well plates, again with filter bottoms; and (4) DNA is prepared in the agarose blocks by a protocol similar to that used for preparing DNA for pulsed-field gels, with the reagents being dialyzed through the (filter) bottoms of the microtiter plate. The DNA produced by this method is suitable for pulsed-field gel electrophoresis, for restriction enzyme digestion, and for the polymerase chain reaction (PCR). Using this protocol, we produced 3000 YAC strain DNAs in three weeks. This automated procedure should be extremely useful in many genomic mapping projects.  相似文献   

13.
A multifunctional magnetic nanoparticle (MNP)-assisted bioseparation method was developed to isolate plasmid DNA (pDNA) from Escherichia coli culture. Using the pH-sensitive carboxyl-modified magnetic nanoparticles, both cell capture and the subsequent removal of genomic DNA/protein complex after lysis can be achieved simply by magnetic separation. Furthermore, the yield and purity of pDNA extracted by MNPs are comparable to those obtained using organic solvents or commercial kits. This time- and cost-effective protocol does not require centrifugation or precipitation steps and has the potential for automated DNA extraction, especially within miniaturized lab chip applications.  相似文献   

14.
Here, we describe a protocol for the selective isolation of any genomic fragment or gene of interest up to 250 kb in size from complex genomes as a circular yeast artificial chromosome (YAC). The method is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae between genomic DNA and a linearized TAR cloning vector containing targeting sequences homologous to a region of interest. Recombination between the vector and homologous sequences in the co-transformed mammalian DNA results in the establishment of a YAC that is able to propagate, segregate and be selected for in yeast. Yield of gene-positive clones varies from 1% to 5%. The entire procedure takes 2 weeks to complete once the TAR vector is constructed and genomic DNA is prepared. The TAR cloning method has a broad application in functional and comparative genomics, long-range haplotyping and characterization of chromosomal rearrangements, including copy number variations.  相似文献   

15.
PCR-based molecular analyses can be hindered by the presence of unwanted or dominant DNA templates that reduce or eliminate detection of alternate templates. We describe here a reaction in which such templates can be exclusively digested by endonuclease restriction, leaving all other DNAs unmodified. After such a modification, the digested template is no longer available for PCR amplification, while nontarget DNAs remain intact and can be amplified. We demonstrate the application of this method and use denaturing gradient gel electrophoresis to ascertain the removal of target DNA templates and the subsequent enhanced amplification of nondigested DNAs. Specifically, plastid 16S rRNA genes were exclusively digested from environmental DNA extracted from plant roots. In addition, pure culture and environmental DNA extracts were spiked with various amounts of genomic DNA extracted from Streptomyces spp., and selective restriction of the Streptomyces 16S rRNA genes via the suicide polymerase endonuclease restriction PCR method was employed to remove the amended DNA.  相似文献   

16.
胸腺嘧啶类似物5-溴脱氧尿嘧啶核苷(BrdU)标记技术是一种研究DNA复制、修复等生命过程的有效手段。由于酿酒酵母(Saccharomyces cerevisiae)中缺少胸腺嘧啶核苷酸补救途径,胞外BrdU不能有效的渗入到基因组中,使该技术在酿酒酵母中的应用受到极大制约。通过在基因组中引入单纯疱疹病毒胞苷激酶(HSV-TK)和人类平衡核苷转运蛋白(hENT1)基因,工作建立了BrdU标记酵母基因组DNA的方法。在生长对数中期加入0.2mg/ml BrdU,离体检测法检测发现,标记3h的荧光信号较1h、5h时强;胞内检测法结果显示,标记3h时55.3%的基因组DNA中能够渗入BrdU。该工作为酿酒酵母DNA复制、修复等方面提供了直接有效的研究方法。  相似文献   

17.
To meet the needs of large-scale genomic/genetic studies, the next-generation massively parallelized sequencing technologies provide high throughput, low cost and low labor-intensive sequencing service, with subsequent bioinformatic software and laboratory methods developed to expand their applications in various types of research. PCR-based genomic/genetic studies, which have significant usage in association studies like cancer research, haven’t benefited much from those next-generation sequencing technolo...  相似文献   

18.
A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even in low technology laboratories. The amount of tissue required by this method is approximately 50-100 mg. The quantity and the quality of the DNA extracted by this method is high enough to perform hundreds of PCR-based reactions and also to be used in other DNA manipulation techniques such as restriction digestion, Southern blot and cloning.  相似文献   

19.
Various investigations have been so far performed for extraction of genomic DNA from plant tissues, in which the extracted intact DNA can be exploited for a diverse range of biological studies. Extraction of high quality DNA from leathery plant tissues (e.g., coniferous organs) appears to be a critical stage. Moreover, for some species such as Taxus trees, bioprocess engineering and biosynthesis of secondary metabolites (e.g., paclitaxel) is a crucial step due to the restrictions associated with extinction of these species. However, extraction of intact genomic DNA from these plants still demands a rapid, easy and efficient protocol. To pursue such aim, in the current work, we report on the development of a simple and highly efficient method for the extraction of DNA from Taxus baccata. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone and RNA contamination was resolved using LiCl. By employing this method, high quality genomic DNA was successfully extracted from leaves of T. baccata. The quality of extracted DNA was validated by various techniques such as RAPD marker, restriction digestions and pre-AFLP. Upon our findings, we propose this simple method to be considered for extraction of DNA from leathery plant tissues.  相似文献   

20.
PCR-based molecular analyses can be hindered by the presence of unwanted or dominant DNA templates that reduce or eliminate detection of alternate templates. We describe here a reaction in which such templates can be exclusively digested by endonuclease restriction, leaving all other DNAs unmodified. After such a modification, the digested template is no longer available for PCR amplification, while nontarget DNAs remain intact and can be amplified. We demonstrate the application of this method and use denaturing gradient gel electrophoresis to ascertain the removal of target DNA templates and the subsequent enhanced amplification of nondigested DNAs. Specifically, plastid 16S rRNA genes were exclusively digested from environmental DNA extracted from plant roots. In addition, pure culture and environmental DNA extracts were spiked with various amounts of genomic DNA extracted from Streptomyces spp., and selective restriction of the Streptomyces 16S rRNA genes via the suicide polymerase endonuclease restriction PCR method was employed to remove the amended DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号